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D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
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Preface

This volume contains the written versions of the lectures delivered at the
“40. Internationale Universitätswochen für Theoretische Physik” in Schlad-
ming, Austria. The 40th “Schladming Winter School” took place during the
period March 3rd–10th, 2001. The topic of the School was “Dense Matter”.

After the establishment of quantum chromodynamics as the fundamen-
tal gauge field theory of strong interactions it soon became an intriguing
question whether a new form of matter consisting just of the ultimate con-
stituents of hadrons, i.e. quarks and gluons, would be possible. Could nuclear
matter undergo a phase transition and transform to quark matter? What
would be the necessary conditions for the creation of the so-called quark-
gluon plasma? Did such a state exist at the beginning of the universe and
could it still be found somewhere in our cosmos? These were only a few of the
questions that could be posed on the issue of a deconfined state of quark mat-
ter. Theoreticians rapidly came up with a variety of answers. Sometimes the
corresponding predictions were rather speculative but gradually they gained
a more quantitative nature. Experimental physicists started to think about
ways of realizing the new form of matter in the laboratory. Soon the idea
of letting heavy nuclear systems collide at high energies was born. Thereby,
possibly, conditions could be reached such that the hadron constituents could
get deconfined over a reasonably large local domain and one could observe
quark matter. The discipline of heavy-ion physics developed rapidly at the
interface between nuclear and particle physics. A lot of effort went into the
theoretical and experimental investigations of heavy-ion reactions. In partic-
ular, experimentalists had a hard time reaching a stage where they could
manage head-on collisions of heavy nuclei at energies large enough so that
a quark-gluon plasma could be formed. After many years and a long series
of experiments, in early 2000 sufficient and convincing enough experimen-
tal data were accumulated so that physicists at CERN could announce the
observation of quark matter. Evidently, this brought new enthusiasm to the
field of heavy-ion physics. Also, one could then expect exciting new evidence
of the quark-gluon plasma from RHIC, which started data taking later on in
2000. Through these developments one certainly had enough reason to devote
the 2001 Schladming Winter School to the topic of “Dense Matter”.



VI Preface

We are happy that we got some of the most renowned experts in the field
to lecture at Schladming. Thus the meeting not only became a respectable
jubilee Winter School – the 40th in a continuous series since 1962 – but was
also very successful scientifically. Practically all relevant topics relating to
heavy-ion physics and the quark-gluon plasma were dealt with in the lec-
tures presented. C. Lourenço summarized the modern experimental evidence
on quark matter formation as they were achieved at CERN. M. Gyulassy com-
plemented them with the most recent data from RHIC, along with exposing
the theory of ultra-relativistic heavy-ion reactions, and M. Alford reviewed
aspects of quark matter in compact stars. The general theory of the quark-
gluon plasma was presented by J.-P. Blaizot, while A. Rebhan explained the
treatment within thermal gauge field theories. The evidence on the properties
of the quark-gluon plasma so far obtained from lattice QCD calculations were
reviewed by F. Karsch. Finally E.V. Shuryak and L. McLerran opened excit-
ing views on a variety of new phenomena that can be studied through quark
matter, for example, color superconductivity or the formation of a color glass
condensate. We should also mention that all of these lectures were accompa-
nied by a number of seminars given on related topics by the participants of
the School.

Here we would like to express our sincere gratitude to the lecturers for all
their efforts in preparing, presenting, and finally writing up their lectures. Our
thanks are also due to the main sponsors of the School, the Austrian Federal
Ministry for Education, Science, and Culture and the Government of Styria,
for providing generous support. We also appreciate the contributions from the
University of Graz and the valuable organizational and technical assistance
from the town of Schladming, Ricoh Austria, and Hornig Graz. Furthermore,
we thank our secretaries, S. Fuchs and E. Monschein, a number of graduate
students from our institute, and, last but not least, our colleagues from the
organizing committee for their valuable assistance in preparing and running
the school.

Graz, Leopold Mathelitsch
October 2001 Willibald Plessas
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1 Introduction

The study of high-energy heavy-ion collisions is presently a very active field
in experimental particle physics, with the RHIC collider at BNL in operation
since summer 2000 and with the ALICE experiment being prepared to study
this kind of physics at LHC energies. The first goal of these experimental at-
tempts, which started in 1986, with the AGS and SPS fixed-target programs,
is the discovery of the phase transition from confined hadronic matter to de-
confined partonic matter. The idea that such a phase transition should exist,
between hadronic and quark matter, has been around since the first mod-
els of the quark structure of hadrons. It is presently studied in detail in the
framework of lattice QCD calculations, which predict its occurrence when the
temperature of the system exceeds a critical threshold at around 170 MeV,
corresponding to a critical energy density of around 600 MeV/fm3 [1]. Fig. 1
illustrates how the energy density (in units of T 4) depends on the temper-
ature of the medium (in units of Tc), increasing by an order of magnitude
within a very small temperature range. At the critical temperature, two phe-
nomena should occur: the color degrees of freedom become deconfined and
chiral symmetry (spontaneously broken in the hadronic world) gets restored.
Both should lead to observable effects, to be looked for in properly designed
experiments. The proof of existence of the quark matter phase and the study
of its properties are key issues in QCD, for the understanding of confinement
and chiral symmetry.

When this new state of matter was postulated, some signatures of its for-
mation in high-energy nuclear collisions were proposed, on the basis of theo-
retical arguments, among which we can highlight the enhancement of strange
particle production, the suppression of charmonia states (J/ψ, χc and ψ′),
due to the screening of the cc̄ binding potential in the QGP colour soup,
and the production of thermal dileptons, electromagnetic radiation emitted
by the ‘free’ quarks. The results obtained by the SPS experiments, after 15
years of collecting data with proton and ion beams, provide “compelling evi-
dence for the existence of a new state of matter, in which quarks roam freely”,
produced in central Pb-Pb collisions at the highest SPS energies. Among the
most exciting observations are the enhanced production of multistrange hy-
perons, the centrality dependence of the J/ψ suppression pattern and the
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Fig. 1. Energy density versus temperature, showing a phase transition at a critical
temperature Tc ∼ 170 MeV

enhancement of intermediate mass dimuon production, a possible indication
of thermal dimuons. Besides, the enhanced production of low-mass dileptons
may be an indication of approach to chiral symmetry restoration.

In view of these exciting results and in order to clarify important questions
remaining open, a new experiment, NA60, has been approved at CERN,
extending the SPS runs with heavy-ion beams and bridging the gap between
the original SPS program and the future high-energy wonderland of ALICE.
At the other end of the energy scale, the NA49 experiment will have a ten
day extension with Pb ions at 20 and 30 GeV per nucleon, to complete the
energy scan of global strangeness production. So far it has collected data at
158, 40 and 80 GeV per nucleon. This extension of the SPS heavy-ion running
time will bring to a proper conclusion the program started in 1986, whilst
providing valuable information, complementary to the studies underway at
RHIC.

Here I review some of the most interesting results obtained by the CERN
SPS experiments, with particular emphasis on the progress made in the last
two years (since the Quark Matter 1999 conference). I will also present some
pertinent questions that still remain open and explain how the future SPS
program will address those issues.

The very large amount of experimental results obtained by the CERN
SPS experiments since 1986 is so vast and diversified that a proper review
would require a much more extensive article, jointly prepared by several of
the active players in the field. The Quark Matter 1999 conference, the last
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one before the RHIC experiments started collecting data, ended with two
summary talks that reviewed in detail the status of the field in terms of
hadronic [2] and dilepton [3] signals. A few attempts have also been made to
see in a coherent way some of the most significant results, in particular those
obtained with the lead beam at the SPS [4]. A tentative summary has been
proposed [5], basically saying that “the combined results provide compelling
evidence for the existence of a new state of matter, featuring many of the
characteristics of the primordial soup in which quarks and gluons existed
before they clumped together as the universe cooled down”.

We can discuss at length the scientific meaning (and opportunity) of these
words, but it is certainly appropriate to say that all the CERN SPS exper-
iments have been successful in delivering significant information, many of
them having seen “what they were looking for”.

However, these 15 years have also confirmed that heavy-ion collisions lead
to very complicated (and fastly evolving) systems, and that it is difficult to
extract clear messages from the observations. Central collisions between two
Pb nuclei, at the highest SPS energies, lead to the production of hundreds
of final-state particles widely emitted without discernible structures. These
complex, and apparently chaotic, final states can be studied applying sta-
tistical concepts, attempting descriptions based on (non-perturbative) QCD
thermodynamics, and summarized by macroscopic variables like tempera-
ture, pressure, etc. But such studies present formidable challenges, requir-
ing complex (and quite expensive) experimental techniques, demanding huge
amounts of computing time, and leading, after a major effort of many peo-
ple, to a few points on a figure, not always easy to interpret. In spite of the
strong indications that very interesting phenomena occur in the early stages
of a Pb-Pb collision, at the highest SPS energies, we still do not know the
final answer to the critical question that motivates this field: can we convince
ourselves and the community at large that we have formed quark matter in
the laboratory?

The final clarification of the present SPS results requires a careful and sys-
tematic approach, to establish beyond reasonable doubt that the QCD phase
transition from hadronic to quark matter happens in central Pb-Pb collisions
at the highest SPS energies. Further work on the available data remains to be
done and, in some cases, where information is obviously missing, new mea-
surements should be urgently performed. Models that claim to explain the
available results must provide specific predictions for future measurements,
with appropriate and carefully explained uncertainty bands. When and if the
new observations validate those predictions, we will have made substantial
progress in our understanding.
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2 Overview of Heavy-Ion Collisions at the SPS

To recognise specific features of heavy-ion collisions with respect to a simple
superposition of nucleon-nucleon interactions, it is very important to make
a ‘scan’ in the centrality of the events. While the most peripheral collisions
should be similar to conventional physics, the most central and violent events,
where the two nuclei collide head-on, are expected to reveal some kind of
‘anomalous’ behaviour.

The centrality variables, like the impact parameter, b, or the number of
participant nucleons, Npart, can be determined from directly measured quan-
tities, such as the charged hadron multiplicity, Nch, the transverse energy,
ET, and the zero-degree (forward) energy, EZDC. Assuming that Nch and ET
are directly proportional to Npart or, similarly, that EZDC scales linearly with
the number of spectator nucleons from the projectile ion (wounded-nucleon
model [6]) it is possible to describe with good accuracy the measured distri-
butions in the framework of the Glauber model of nucleus-nucleus collisions.
A typical example [7], using Nch, can be seen in Fig. 2.

Figure 3 illustrates an alternative way to measure the centrality of the col-
lisions, using the forward energy measured in a hadronic calorimeter placed
in the beam line (at zero degree). If the incident Pb beam ion traverses the
traget without interacting, all the energy (208 × 158 GeV, or 33 TeV) is de-
posited in the calorimeter, resulting in the ‘beam peak’ seen in the figure.
This figure also illustrates the fact that the experiments can select the col-
lected events, at the trigger level, according to the centrality of the collisions.
This is particularly useful to increase the relative fraction of central events
in the collected data. Without this feature, many experiments would almost
only collect the much more frequent peripheral collisions, lacking statistics in
the most interesting region.

Figure 4 shows the baryon rapidity distributions, in the centre-of-mass
system, for central Pb-Pb collisions, compared to the S-S and pp distribu-
tions, scaled up to match the number of nucleons participating in the Pb-Pb
collisions. The broad peaks at rapidities around 1.5 correspond to the projec-
tile and target nucleons, shifted to mid rapidities from the beam and target
rapidities due to the loss of energy induced by their mutual traversing (an ef-
fect commonly known as ‘stopping’). The S beam had an energy of 200 GeV
per incident nucleon, while the Pb beam was less energetic, 158 GeV per
nucleon, therefore having a somewhat smaller ‘beam rapidity’. However, the
reason why the Pb peaks are closer to mid rapidity than the S peaks is mostly
due to the fact that the Pb nuclei are much bigger, thereby being much more
effective in ‘stopping’ each other.

Most of the particles newly produced in a heavy-ion collision, like pions
and kaons, for instance, are produced at mid-rapidity, after the two colliding
nuclei crossed each other. Figure 5 shows the pseudo-rapidity distributions of
charged particles produced in Pb-Pb collisions, at 158 GeV per nucleon (top)
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Fig. 2. The charged hadron multiplicity distribution measured by NA57 adjusted
by the wounded-nucleon model (top) and illustrating the splitting of the event
sample in different centrality classes (bottom)

and at 40 GeV per nucleon (bottom), for several different centrality classes,
tagged by the EZDC energy of the events.

Besides the number (or rapidity density) of produced charged particles
and the total forward energy measured in a zero-degree calorimeter, also the
flux of energy released in the tranverse plane, ET, provides a good estima-
tor of the geometry of the heavy-ion collision. In fact, the measurement of
ET is essentially equivalent (but much easier to do experimentally) to the
measurement of the total multiplicity of produced particles (mostly pions),
from the point of view of sampling the events in different centrality classes.
It is actually a remarkable observation that the ratio between ET and the
number of produced charged particles remains essentially constant from the
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Fig. 3. Forward energy distributions measured by the NA50 zero-degree calorime-
ter, for three different event samples selected at the trigger level
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reached in these collisions. Figure 7 shows that the value 400 GeV is reached
in central Pb-Pb collisions at the highest SPS energies [9].

From the measured values of mid-rapidity dET/dy, the energy density
can be estimated according to the formulation proposed by Bjorken almost
20 years ago [10], assuming a boost-invariant longitudinal expansion. The
estimates give ε ∼ 3.2 GeV/fm3 for central Pb-Pb interactions [9], signifi-
cantly higher than the value 600-700 MeV/fm3 calculated in lattice QCD for
the occurrence of the phase transition [1]. Table 1 shows the corresponding
estimates for smaller collision systems, S-S and S-Au.
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Table 1. Values of the energy density, ε, reached in some collision systems studied
at the SPS, estimated according to the Bjorken model

System Elab/A Npart ε

(GeV) (GeV/fm3)

S - S 200 58 1.3

S -Au 200 113 2.6

Pb -Pb 158 390 3.2

3 Strangeness Production

One of the earliest predictions in the field of high-energy heavy-ion physics
is that particles containing strange quarks should be produced more often if
the produced system goes through a quark-gluon plasma phase. An increase
of around a factor 2 has indeed been observed [11], in global strangeness
production, when comparing heavy-ion to elementary collisions, at around
the same colliding energies, as can be seen in Fig. 8.

Fig. 8. The strangeness suppression factor, λs, for the production of strange quarks
with respect to the production of u and d quarks, as a function of the collision
energy, for elementary and nuclear collisions
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Global strangeness yields are dominated by kaon production (around 75 %
of all the produced strange particles). Figure 9 shows how the kaon multi-
plicity, per produced pion, evolves with the system size, from peripheral to
central Pb-Pb collisions, including points from some other (smaller) colliding
systems. These measurements were done, in particular, by the NA49 large-
acceptance experiment [12].
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Fig. 9. Production yield of kaons (and anti-protons), normalized to pion produc-
tion, versus the number of nucleons involved in the pp, S-S and Pb-Pb collisions

The most spectacular observations have been made, however, in the multi-
strange hyperon sector. The very large enhancement factors in particle yields
per participating nucleon (see Fig. 10), reaching a factor around 17 for the
Ω, a triple-strange hyperon, and the fact that these factors are significantly
higher for the states with more strange quarks, i.e. EΩ > EΞ > EΛ, where
Ei is the enhancement of the particle i with respect to p-A interactions,
are naturally explained if the particle yields are determined from statisti-
cal hadronization of a strangeness-enhanced plasma phase. On the contrary,
such enhancement levels cannot be reproduced in conventional (final-state
hadronic rescattering) scenarios, given the short lifetime of the expanding
hadronic system (see, however, the recent work mentioned in Ref. [13]). When
these results were presented at the Quark Matter 1999 conference [14], a ques-
tion was left in the air: is there a threshold behaviour in the enhancement
pattern, between the p-Be and p-Pb points and the Pb-Pb values? The flat
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pattern observed in the Pb-Pb data indicated very little dependence on the
centrality of these collisions, for Npart > 100. Where was the transition?
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Fig. 10. Multi-strange hyperon production yields, at mid-rapidity, per wounded
nucleon, normalized to the p-Be system, as a function of the number of wounded
nucleons. The right panel collects the particles with no valence quark in common
with the colliding nucleons

The NA57 experiment has continued these studies, making a special ef-
fort to collect peripheral Pb-Pb collisions. The first results were presented
at the Quark Matter 2001 conference [15]. They show, as can be seen in
Fig. 10, that the enhancement of Ξ̄+ production increases by a factor 2.6,
from Npart = 62 to 121. The confirmation of a threshold behaviour in the
strangeness enhancement pattern may come from the data analysis of the
other strange hyperons. Unfortunately, having only five bins in centrality,
and four of them showing a flat behaviour, the Pb-Pb pattern measured by
the NA57 experiment will fall short of showing a clear transition, with a
characteristic threshold, if it exists. A better understanding of the apparent
onset of the enhancement would require studying ‘intermediate mass’ nuclear
collisions, like In-In, for instance, in small centrality steps. Unfortunately, the
effort required by the preparation of the ALICE experiment seems to prevent
the realisation of such future studies.

Another major addition to the strangeness chapter is being provided by
the NA49 experiment, when running with proton beams. The very large ac-
ceptance of this experiment makes it particularly appropriate in the study of
asymmetric collision systems, as p-A interactions, where the reflection of the
probed phase space window around midrapidity cannot be performed. First
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results of “NA49-hadrons” have also been shown at the Quark Matter 2001
conference [16], raising some questions on the “p-A reference baseline” used
by WA97/NA57 in the extraction of the enhancement factors. Fortunately,
we will see further data on this issue in the near future, since “NA49-hadrons”
has been approved for further running in the next few years, and NA57 will
collect more data on proton induced collisions in 2001.

Still in the strangeness sector, long standing questions concerning φ pro-
duction remain unclear. NA50 sees, in the dimuon decay channel, a strong
increase in the yield of φ mesons produced in heavy-ion collisions and a
transverse-mass spectrum with a rather low ‘inverse slope’ [17], contrary to
the observations of the NA49 experiment [18], in the K+K− decay channel.
Future measurements of low-pT φ production in the dilepton channel, by
NA60, should help clarifying the source of discrepancy.

4 Evolution of the Final State

The understanding of the particle multiplicities (or relative production yields)
and of their kinematical distributions gives significant information on the
properties of the system that, by hadronization, resulted in the observed final
states. The hadronic data collected at the SPS, in particular with high-energy
Pb-Pb collisions, has been studied in the framework of statistical models of
the hadronization process. The data collected in the large acceptance NA49
detector have been particularly useful for these studies, and to fix the free
parameters of the models, such as the chemical freeze-out temperature, the
baryon chemical potential, etc.

Figure 11 shows several measurements of ratios of particles yields (points),
compared to values (lines) calculated in a particular statistical model [19],
where the hadrons are produced as a gas in complete chemical equilibrium,
with a chemical freeze-out temperature of 168 MeV and a baryon chemical
potential of 266 MeV. Given the fact that this temperature is very close to
the value expected for the phase transition to the QGP phase, it is tempting
to imagine that the system crosses the phase boundary, from the partonic to
the hadronic phases, shortly before the chemical freeze-out point. Further-
more, the almost complete strangeness saturation assumed in these models
indicates that the observed strangeness enhancement comes essentially from
the partonic phase.

Once the hadrons are produced, the chemistry step is over but the parti-
cles continue to collide with each other, influencing their kinetics. It is only
later, once the system has expanded further, that the particles stop inter-
acting and fly through to the detectors. This ‘thermal freeze-out’ point can
be probed by looking at the transverse mass spectra of identified particles,
for instance. The flux of particles in the transverse plane is purely due to
the production mechanisms taking place during the collision, while in the
longitudinal direction things are made more complicated by the very high
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Fig. 11. Comparison of particle yields measured in Pb-Pb collisions, at the SPS,
with the values expected in a thermodynamical model assuming statistical particle
production from a thermal bath

initial-state energy of the colliding nuclei. The NA44, NA49 and WA97 ex-
periments, among others, have shown that all the hadrons exhibit exponential
transverse mass spectra, that can be simply characterized by the tempera-
ture of the medium at thermal freeze-out, Tf , and by the mean transverse
flow velocity of the medium, 〈v⊥〉. These two values determine the inverse
slope of the transverse-mass distributions, for each particle species, roughly
as Tf +0.5 ·m0 · 〈v⊥〉2. This linear dependence with the mass of the produced
particles, m0, can be seen in Fig. 12 [20].

These observations show that the thermal motion of each produced hadron
is superimposed on the ordered collective flow of the whole system, due to
the radially expanding fireball, looking like a microscopic version of the Big
Bang [21]. The departure of the Ω from the linear trend may be due to an
early decoupling (freeze-out) of this particle, probably because, having zero
isospin, it cannot form resonances with the copious pions, that substantially
contribute to the equilibration of the other hadrons [22].

To separately determine the radial flow velocity and the freeze-out tem-
perature of the system, it is very important to have other, independent,
sources of information. For instance, the transverse flow of the system can
also be seen through its influence on the Bose-Einstein pion correlations [23].
By following the dependence of the HBT transverse radius on the transverse
momentum of the pion pair (see Fig. 13), it is possible to extract the corre-
lation between the radial flow velocity and the freeze-out temperature of the
system. Fortunately, the combination of this correlation with the information
obtained from the study of the hadronic transverse mass spectra, allows to
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separate the random thermal motion from the collective flow, as can be seen
in Fig. 13, leading to the values Tf ∼ 100 MeV and 〈v⊥〉 ∼ 0.55 c [24].

5 Low-Mass Dilepton Production

The CERES experiment has observed [25] that the yield of low mass e+e−

pairs measured in p-Be and p-Au collisions is properly described by the ex-
pected “cocktail” of hadronic decays, while in Pb-Au collisions, on the con-
trary, the measured yield, in the mass region 0.2–0.7 GeV, exceeds by a factor
of 2.5 the expected signal [26], as shown in Fig. 14.

The dileptons from π+π− annihilation would increase the expected yield
around the mass of the ρ meson, not reproducing the measured shape. The
excess dileptons are concentrated at low pT (Fig. 15) and their yield seems
to scale with the square of the charged particle multiplicity (Fig. 16).

These observations are consistent with the expectation that the properties
of vector mesons should change when produced in dense matter. In particular,
near the phase transition to the quark-gluon phase, chiral symmetry should be
partially restored, making the vector mesons indistinguishable from their chi-
ral partners, thereby inducing changes in their masses and decay widths [27].
The short lifetime of the ρ meson, shorter than the expected lifetime of the
dense system produced in the SPS heavy-ion collisions, makes it a sensitive
probe of medium effects and, in particular, of chiral symmetry restoration.

The present measurements are not accurate enough to clearly distin-
guish between a change in the ρ mass (signaling the restoration of chiral
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symmetry) and a broadening due to conventional hadronic interactions [28].
Already E. Shuryak [29] and B. Müller [30], in their Quark Matter 1999
papers, emphasized the importance of a considerable improvement in the
CERES measurements of low-mass dilepton production, in terms of signal
to background ratio, mass resolution, and statistics. A TPC was added to
the CERES setup [31], to improve the momentum resolution of the dielec-
tron measurement. Unfortunately, problems in the data taking during the
year 1999 have prevented the CERES experiment from collecting a signifi-
cant sample of dilepton events [32]. Those problems were solved in time for
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the run of the year 2000 and we are eagerly waiting for the results from this
new data set. A first look into this new data sample indicates that a mass
resolution close to the expected value of around 2 % may be within reach.
Unfortunately, the collected statistics will probably not be enough to have
an accurate measurement of the ω resonance, which would be very helpful in
the studies of the in-medium modifications apparently affecting the ρ.
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6 Intermediate-Mass Dilepton Production

The NA38 and NA50 experiments have studied [33] the production of dilep-
tons in the mass window between the φ and the J/ψ peaks, as a superpo-
sition of Drell-Yan dimuons and simultaneous semileptonic decays of D and
D̄ mesons, after subtraction of the combinatorial background from pion and
kaon decays [34].

The Drell-Yan and open-charm contributions were calculated with the
PYTHIA event generator [35] with the MRS A set of parton distribution func-
tions [36]. PYTHIA describes reasonably well [37] the kinematics and cross
sections (including the energy dependence) of D meson hadroproduction, as
well as the semi-leptonic decays and the corresponding lepton distributions.
Figure 17 shows that the dimuon mass spectra measured in p-A collisions are
very well reproduced taking the high-mass region to normalize the Drell-Yan
component and an open-charm cross-section in good agreement with direct
measurements made by other experiments. The calculations do not include
NLO QCD diagrams, particularly important for high-pT Drell-Yan produc-
tion.
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Fig. 16. Yield of excess dileptons versus the charged particle multiplicity. Is there
an onset at dNch/dη ∼ 100 ?

On the contrary, the superposition of Drell-Yan and open-charm con-
tributions, with the nucleon-nucleon absolute cross sections scaled with the
product of the mass numbers of the projectile and target nuclei (as expected
for hard processes), fails to properly describe the dimuon yield measured in
ion collisions.

Figure 18 shows, for central Pb-Pb collisions, how the sum of the expected
sources underestimates the measured data. The same figure shows that the
data can be reproduced by simply increasing the open-charm yield. The scal-
ing factor by which the charm contribution should be multiplied to properly
describe the measured spectra seems to grow linearly with the number of
nucleons participating in the collision, as shown in Fig. 19. In this figure, the
points “4-D analysis” are obtained with an improved deconvolution method
to extract the physical kinematics from the measured values, affected by
acceptance and finite resolution (smearing) effects. This analysis method ac-
counts for physical correlations among kinematical variables and does not
require any assumption on the specific shapes of their distributions [38].

The observed excess can be due to an overall enhancement of open-charm
production in heavy-ion collisions [39]. An alternative explanation could be
that the rescattering of the charm quarks or D mesons in the produced
medium leads to a broader pT distribution and would locally enhance the
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charm component in the limited phase-space domain covered by NA50 [40].
However, recent studies [41] have shown that the data cannot be accounted
for by this last model.

The observed excess can also be due to the production of thermal dimuons,
a signal that was the original motivation for the NA38 experiment and
that has been recently revisited [42,43]. In particular, the intermediate-mass
dimuons produced in the most central Pb-Pb collisions are well reproduced by
adding thermal radiation [41], calculated according to the model of Ref. [42],
to the Drell-Yan and charm contributions normally extrapolated from nucleon-
nucleon collisions. This model explicitly includes a QGP phase transition
with a critical temperature of 175 MeV. The best description of the data is
obtained using ∼ 250 MeV as the initial temperature of the QGP medium ra-
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Fig. 18. Dimuon mass distribution measured in central Pb-Pb collisions, compared
to the expected sources, with and without scaling up the charm contribution
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diating the virtual photons. The presently available data cannot distinguish
between an absolute enhancement of charm production and the emission of
thermal dilepton radiation. The clarification of the nature of the physical
process behind the observed excess is also on the wish lists presented by
E. Shuryak and B. Müller in their Quark Matter 1999 papers, and is the
strongest physics motivation of the NA60 experiment.

7 Charmonia Production and Suppression

The formation of a deconfined medium should induce a considerable suppres-
sion of the charmonia production rate, due to the colour ‘Debye’ screening
of the cc̄ potential or to the breaking of the cc̄ binding by scattering with
energetic (deconfined) gluons [44]. However, even the relatively simple mea-
surement of J/ψ production faces a big challenge when it comes to furnish a
convincing logical case that proves, to the satisfaction of the experts in the
field, that a deconfined state of matter has been formed. It is not enough to
show that a certain observable changes from p-Pb to Pb-Pb collisions, for
instance, or to argue that its value in the most central nucleus-nucleus col-
lisions is different from what is calculated in a ‘conventional physics’ model.
The best path to clearly establish a solid result and shed light on this compli-
cated field is to build a robust set of measurements that establishes a precise
reference baseline, relative to which the specific behaviour of heavy-ion colli-
sions can be extracted. Such a baseline shows what is the ‘normal’ behaviour
of the signal we are studying, with respect to which we look for changes
due to QGP formation. Furthermore, we are in a much better position if
nature provides us with a reference process, insensitive to the formation of a
deconfined phase, specially if we can measure it with the same detector.

In the case of the J/ψ suppression topic, the baseline is built from the
measurements done by NA38 and NA50 with pp, p-A and light-ion colli-
sions [45]. Very peripheral Pb-Pb collisions have been successfully collected
in the year 2000 and we will soon know how well they follow the “normal
nuclear absorption” baseline. The best reference physics process, at SPS ener-
gies, is the rate of high-mass Drell-Yan dimuons, since the Drell-Yan process
can be precisely calculated and depends on the collision system in a well
known way. Figure 20 shows absolute cross sections of Drell-Yan production
measured by the NA38, NA51 and NA50 experiments in pp, p-D, p-W, S-U
and Pb-Pb collisions, at several energies, divided by the corresponding values
calculated at leading order with the MRS A parton distribution functions.

From the measured J/ψ production yields we can derive the J/ψ cross
section per nucleon, Bψ

μμσ
ψ/AB, displayed in Fig. 21 as a function of the

product of the mass numbers of the two colliding nuclei. Contrary to what
happens with the evolution of the Drell-Yan process, the Pb-Pb J/ψ point is
completely different from the value indicated by the pattern established by
the p-A and light-ion measurements.
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Fig. 20. The measured yield of Drell-Yan dimuons follows the expected values,
from pp to Pb-Pb collisions

Fig. 21. The J/ψ production cross section measured from pp to Pb-Pb collisions,
in the NA38, NA51 and NA50 experiments
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The peculiar behaviour of the Pb-Pb data can be seen in much more
detail by binning the collected event sample as a function of the centrality of
the collisions. Figure 22 shows how the J/ψ production rate, with respect to
the yield of Drell-Yan dimuons, decreases from peripheral to central Pb-Pb
collisions, using either EZDC or ET to estimate the centrality of the reactions.
The same plots show the “normal J/ψ absorption line”, determined by the
reference data (from pp to S-U) shown in Fig. 21. The data points collected in
the most central collisions show a very significant departure from the expected
behaviour, while the most peripheral points seem to be in (rough) agreement
with the absorption expected in normal nuclear matter.

The upper panel of Fig. 23 shows that the observed two-step suppression
pattern is in clear disagreement with the predictions of the ‘conventional’
models [46,47,48,49] that attribute the disappearance of the J/ψ mesons to
interactions with ‘comoving’ hadrons. A first departure from the conventional
curves is seen for collisions that release around 40 GeV of neutral transverse
energy in the electromagnetic calorimeter of NA50. A second substantial
drop is seen for the most central Pb-Pb collisions, while the hadronic models
systematically predict a smooth absorption trend. On the other hand, a two-
step pattern, as seen in the data, is naturally expected if the charmonia
states are dissolved in a deconfined medium, due to the different melting
temperatures of the χc and J/ψ states (about 30–40 % of the observed J/ψ
mesons result from the decay of χc states). The addition of the pp, p-A and
S-U results makes the lower panel of Fig. 23 particularly illustrative of the
unconventional nature of the observed J/ψ suppression pattern.

If we accept that this pattern indicates the production of a state of matter
where colour is no longer confined, we must move on to the detailed under-
standing of how deconfinement sets in, and which physics variable governs the
threshold behaviour of the (χc) suppression: (local) energy density, density
of wounded nucleons, of percolation clusters, of produced gluons, etc. This
requires collecting data with a smaller nuclear collision system like In-In. In-
deed, it is possible to predict at which impact parameter, b, of In-In collisions
the same threshold is reached in (local) energy density, or any other variable,
as is reached in Pb-Pb collisions of b ≈ 8 fm, where the χc state starts melting.
According to the deconfinement model used in the calculation [50] shown in
Fig. 24, the onset of anomalous J/ψ suppression should happen at an impact
parameter b = 2.0–2.5 fm, in In-In collisions at 158 A GeV. A verification of
such specific predictions would be the final element of proof that the decon-
fined quark-gluon phase sets in, and would provide fundamental information
on the mechanisms behind the observed phenomena. In this context, it is
also important to improve our knowledge of the nuclear dependence of χc

production, in p-A collisions, at SPS energies.
The J/ψ data do not provide a direct measurement of the critical temper-

ature. Finite-temperature lattice QCD tells us that the strongly bound J/ψ
cc̄ state should be screened when the medium reaches temperatures 30–40 %
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higher than Tc, while the larger and more loosely bound ψ′ state should melt
near Tc. The ψ′ is already significantly suppressed when going from p-U to
peripheral S-U collisions but the presently existing results are not clear in
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what concerns the pattern of the ψ′ suppression. Figure 25 shows the ratio
between the ψ′ and Drell-Yan production rates, as a function of L, the thick-
ness of nuclear matter crossed by the charmonia states. The corresponding
J/ψ (normal nuclear absorption) pattern is also shown, scaled down by the
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factor 1.64 %. Is the ‘anomalous’ ψ′ suppression due to QGP melting or to
hadronic absorption? If we see that this suppression happens more or less in
an abrupt way, within a single-collision system rather than comparing p-U to
S-U data, we would know that Debye screening is the mechanism responsible
for the ψ′ disappearance and we would have a clear measurement of Tc. This
requires a new measurement, with improved mass resolution to have a cleaner
separation between the ψ′ and J/ψ peaks, and which scans an energy density
region including the p-U and the S-U points.

Improved measurements of J/ψ and ψ′ production, with intermediate
mass nuclei, were also included in the wish lists of E. Shuryak and B. Müller,
and are an important part of the physics program of the NA60 experiment,
which will also measure χc production in p-A collisions.

8 Open-Charm Production

Knowing that the bound cc̄ states are suppressed, it is natural to ask what
happens to the unbound charm. Charm quarks are so heavy that they can
only be produced at the earlier stages of the nuclear collision, before the
eventual formation of the QGP state. Charm is the heaviest flavour that
can be studied in heavy-ion collisions at the SPS energies. The production
of charm quarks leads mainly to correlated pairs of D and D̄ mesons. Only
a few percent of the charmed quark pairs end up in the bound charmonia
states presently studied by the NA50 experiment, and which exhibit a rather
interesting “anomalous” behaviour. What happens to the vast majority of c
quarks? Are they affected by energy loss while crossing the dense (partonic
or hadronic) medium? Is charm production enhanced similarly to what has
been seen in the strangeness sector? Finally, D meson production provides
the natural reference with respect to which we should study the observed J/ψ
suppression, since both production mechanisms depend on the same gluon
distribution functions. If charm production is enhanced in nuclear collisions,
it makes the J/ψ suppression even more anomalous. A direct observation of
D meson production is clearly the most important new measurement that
remains to be done at the SPS, and constitutes a basic reason for the con-
struction and running of NA60.

9 Future Prospects

The results and open questions presented in the previous sections emphasize
the importance of having a new experiment at the SPS that can significantly
improve several existing observations and make a few new measurements,
including a measurement of open-charm production in heavy-ion collisions.
A dedicated experiment is needed that can cope with the very high parti-
cle multiplicities reached in the most central nuclear collisions (400 charged
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particles per unit rapidity at midrapidity) and with the rather small D pro-
duction cross section.

The NA50 experiment has been using CERN’s highest-intensity heavy-
ion beam (more than 107 ions per second) and has a very selective dimuon
trigger, quite appropriate to look for rare processes. The recently approved
NA60 experiment [51] complements the muon spectrometer and zero-degree
calorimeter already used in NA50 with two state-of-the-art silicon detectors,
placed in the target region: a radiation-hard [52] beam tracker, consisting
of four silicon microstrip detectors placed on the beam and operated at a
temperature of 130 K, and a 10-plane silicon pixel tracking telescope, made
with radiation tolerant [53] readout pixel chips, placed in a 2.5 T dipole
magnetic field.

The NA60 experiment has been approved to run from 2001 to 2003, using
proton, Pb and In beams. The following questions summarize the physics
motivation of NA60.

• What is the origin of the dimuon excess seen in the intermediate-mass
region? Thermal dimuon production?

• Is the open-charm yield enhanced in nucleus-nucleus collisions? How does
it compare to the suppression pattern of bound charm states?

• What is the variable (local energy density, cluster density, etc.) that rules
the onset of charmonia suppression?

• What is the physical origin of the ψ′ suppression? If it is due to Debye
screening, what is its melting temperature?

• Which fraction of the J/ψ yield comes from χc decays? Does it change
from p-Be to p-Pb collisions?

• Are there medium-induced modifications in the ρ meson? Is there a
threshold behaviour in the low-mass dilepton enhancement? What hap-
pens with the ω meson?

• Is the observed φ enhancement a specific feature of heavy-ion collisions?
Is the φ sensitive to flow?

The high-granularity tracking telescope, placed in a powerful dipole field,
gives access to the muon tracks at the vertex level and vastly improves the
mass resolution of the dimuon measurement. This has been demonstrated
in a very fast feasibility test done in 1998, using a small telescope (four
half-planes) made of the previous generation of readout pixel chips. The re-
sults, shown in Fig. 26, confirm that the mass resolution improves from 70 to
20 MeV at the ω mass, as expected from the physics performance simulations
illustrated on Fig. 27.

The NA60 beam tracker gives the transverse coordinates of the interaction
point, on the targets, with enough accuracy (around 20 μm) to measure the
impact parameter of the muon tracks, i.e. the minimum distance between
the track and the collision vertex, in the transverse plane. Thanks to this
information, NA60 will be able to separately study the production of prompt
dimuons and the production of muons originating from the decay of charmed
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Fig. 26. Dimuon mass distributions measured in 1998, in p-Be collisions, before
(top) and after (bottom) using the information of the test pixel telescope. The
curves represent the low-mass vector meson resonances (ρ, ω and φ) on the top of
a continuum. They are normalized to the same number of events in both figures.
The collected statistics (600 events) correspond to a few minutes of NA60 running

mesons, in p-A and heavy-ion collisions. The prompt dimuon analysis will use
events where both muons come from (very close to) the interaction vertex.
The open-charm event sample is composed of those events where both muon
tracks have a certain minimum offset with respect to the interaction point
and a minimal distance between themselves at zvertex. Figure 28 shows the
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Fig. 27. Simulated dimuon mass distribution in Pb-Pb collisions, before (top) and
after (bottom) using the NA60 pixel telescope information. The statistics corre-
sponds to around one week of running

simulated mass spectra for both event samples. It should not be difficult to
see which of these two event samples is enhanced by a factor of 2 or 3 in
nuclear collisions of Npart ∼ 300.

Figure 29 shows the accuracy of the determination of the interaction point,
in the transverse plane. Along the beam axis the vertex is found with a
precision of ∼ 100–150 μm. If the incident nucleus makes a peripheral collision
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(bottom) event selections. The background contribution is also shown, including
pion/kaon decays and fake matches between the tracks in the muon and in the
vertex spectrometers. The error bars in the signal points include the uncertainty
from background subtraction

and the beam spectators fragment collides further down in the target, the
double emission of particles should be distinguishable from what happens in
a single (central) collision. This allows the use of a thicker target, with a
corresponding gain in total effective luminosity. A high interaction rate is the
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Fig. 30. Resolution on the measurement of the centrality of the collisions, using
three different estimators

basis for enough statistics to study the charmonia production yield in many
centrality bins, a necessary condition to accurately determine a step-wise
suppression pattern. Besides statistics, it is also important to have a good
accuracy in the measurement of the centrality of the collision. Figure 30
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shows that a resolution between 5 % and 10 %, depending on the centrality,
should be reached in NA60, using the forward energy, EZDC, and the charged
particle multiplicity, dNch/dy.

The studies of prompt dimuon and open-charm production in p-A colli-
sions are important reference measurements, to understand the results ob-
tained with nuclear collisions. In particular, the ratio between the open-charm
and the Drell-Yan production cross sections will be determined with high ac-
curacy in several p-A collision systems, revealing if these two hard processes
have the same A-dependence or not. Figure 31 illustrates the foreseeable
analysis of intermediate-mass dimuons production, in p-Be or p-Pb collisions,
showing the pT distribution of the prompt dimuons and the mass distribution
of the open charm events.
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Fig. 31. Expected prompt (top) and charm (bottom) event samples selected in
proton-induced collisions
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More challenging will be the measurement of the dependence of χc pro-
duction on the mass number of the target, in p-A collisions, by seeing how
the ratio between χc and J/ψ yields changes from p-Be to p-Pb collisions. To
minimize the systematical uncertainties due to the beam flux normalization,
the measurement will be done using the Be and Pb targets simultaneously in
the beam. The χc → ψ γ → ψ e+e− decays will be used for this study, with
the photons converting in a Pb disk placed downstream of the targets, and
the electron-positron pairs reconstructed in the silicon pixel telescope.

10 Summary and Conclusions

Starting from the questions and wishes expressed at the Quark Matter 1999
conference, concerning measurements that should be done at the CERN SPS
before closing this facility, I have briefly mentioned some of the most recent
developments and emphasized the issues that have imposed a continuation
of the SPS heavy-ion physics program.

After 15 years of “learning curve”, we can say that we have been unable to
falsify the hypothesis of quark-gluon plasma formation at the CERN SPS. In
fact, as predicted, strangeness is enhanced, the J/ψ is suppressed, the dimuon
continuum looks as if thermal dileptons are produced, and there are modifi-
cations in the low-mass dilepton spectra, among other observations. These re-
sults provide extremely relevant information about the (predicted) formation
of a deconfined state of matter in high-energy heavy-ion collisions. However,
considerable homework remains to be done in view of converting “compelling
evidence” into “conclusive evidence” that the quark-matter phase has indeed
been formed at CERN. This is exactly the reason why the heavy-ion com-
munity must make a significant effort to further clarify the present results
and reach a deeper understanding of the critical behaviour of QCD at SPS
energies.

The renaissance of the heavy-ion physics program at the CERN SPS,
with the extension of NA49 and the approval of the new NA60 experiment,
represents an evolution from a broad physics program to a dedicated study
of specific signals that already provided very interesting results. The new
measurements of NA60 should give a significant contribution to the under-
standing of the presently existing results, and considerably help in building
a convincing logical case that establishes beyond reasonable doubt the for-
mation (or not) of a deconfined state of matter in heavy-ion collisions at the
SPS.
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Theory of High-Energy A+A at RHIC
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Summary. In this article I introduce aspects of current theory used to interpret
the preliminary data on ultra-relativistic nuclear collisions at RHIC energies in
terms of the physical properties of QCD matter at extreme densities. Topics cov-
ered include: What are the physics questions at SPS and RHIC? Geometrical vs.
dynamical features of A+A. The interplay of computable hard perpurbative QCD
vs. phenomenological soft dynamics. Baryon number transport and junctions. How
can we compute and get experimental control over the initial conditions? How to
reconcile apparent hydrodynamic behavior with partonic/hadronic transport the-
ory? I use the preliminary RHIC data available up to June 1, 2001 to illustrate
these topics. Most technical details are deferred to the literature. However, since
the main new observable at RHIC relative to SPS is jet quenching, I elaborate more
on this “tomographic” probe of ultra-dense matter. The possible discovery of jet
quenching at RHIC by STAR and PHENIX is highlighted.

1 Introduction

Finally, after 20 years of preparation [1], a new chapter in nuclear/particle
physics commenced on June 12, 2000 with the measurement of the first
Au + Au collisions at

√
s = 56 AGeV (GeV per nucleon pair) in the Rel-

ativistic Heavy Ion Collider (RHIC) at the Brookhaven National Lab (BNL).
Soon thereafter collisions at

√
s = 130 AGeV were also measured. The first

results were reported at Quark Matter 2001 [2] from the four major exper-
iments, STAR [3], PHENIX [4], PHOBOS [5], and BRAHMS [6]. A small
army of ∼ 1000 experimentalists measured the flavor, rapidity, and trans-
verse momentum distributions of the approximately 4000 charged particles
produced in each central (head on) collision at 130 AGeV. In the summer of
2001, it is anticipated that RHIC will reach its design energy, and p+ p and
Au+Au collisions at

√
s = 200 AGeV will come under experimental scrutiny.

This article provides a very condensed introduction to current theoretical
work aimed to provide a consistent interpretation of observables measured
in such reactions in terms of the properties of dense QCD matter. The color
slides of the original lectures can be found on my WWW site [7]. This article
is designed to supplement those slides and update them with the preliminary
RHIC data available as of June 1, 2001.

The theoretical work on the new physics that may exist in QCD matter
at extreme densities began in the mid 1970’s with the realization that the
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asymptotic freedom property of QCD implies the existence of a new phase
of strongly interacting matter called the Quark-Gluon Plasma (QGP) [8]-
[13]. Unlike familiar nuclear or more generally hadronic matter consisting of
composite “elementary” particles (π,K, ρ, p,Δ,Λ, · · ·) in which quarks and
gluons are permanently confined, the QGP phase at very high temperature
and/or baryon chemical potential (T, μB � ΛQCD ∼ 200 MeV = 1/fm) is
one where the interactions between quarks and gluons become relatively weak
and short range

V (r) ∼ g2

4π
e−μDr

r
, αs =

g2

4π
∝ 1

log(T or μB)
→ 0 .

The color electric (Debye) screening mass μD(T, μB) increases linearly with T
or μB modulated by a slowly varying factor of the running coupling, g(T, μB)
(see the article of T. Rebhan in this book). The thermodynamic properties
of this deconfined and chirally symmetric (∼massless) phase of matter are
thus expected in perturbation theory to reduce approximately to an ideal
Stefan-Boltzmann gas of quarks and gluons. For the Standard Model with 3
colors and Nf flavors of “light” quarks relative to T, μB (SUc(3)⊗SUf (Nf )),
the Stefan Boltzmann constant for μB = 0 is

KSB =
3P
T 4 =

ε

T 4 = (2s × 8c +
7
8

× 2s × 2q+q̄ × 3c ×Nf )
π2

30
(1 +O(g2)) ∼ 12

taking the helicity, color, flavor, and antiquark degrees of freedom into ac-
count. In reality the severe infrared singularities of perturbative QCD (pQCD)
lead to large non-perturbative corrections to the ideal gas equation of state for
all temperatures and chemical potentials accessible experimentally even be-
yond the future Large Hadronic Collider. Only numerical lattice QCD (lQCD)
methods [14] (see the article of F. Karsch in this book) can provide reliable
predictions for the thermodynamic properties of the QGP phase of matter.
Effective models and resumed many-body techniques (see the articles of T.
Alford, T. Rebhan, J.P. Blaizot, and E. Shuryak in this book) are, however,
needed to interpret the lQCD “data” and provide physical insight especially
at finite chemical potential. However, it is sobering to recall that pQCD
thermodynamic expansion of the pressure in powers of g shows no sign of
convergence [13] even before the Linde infrared catastrophe at O(g6), and
non-perturbative corrections to the pQCD Debye mass, μD, remain about a
factor of ∼ 3 up to T ∼ 200 GeV [16]. The full theoretical understanding of
the structure of the non-Abelian plasma phase of QCD therefore remains a
fundamental open problem in physics because it involves strongly correlated,
nonperturbative and possibly turbulent dynamical features [15].

One of the essential and intriguing aspects of the QCD many-body prob-
lem is that the physical vacuum is an extraordinarily complex coherent many-
body medium. The gluon and quark condensates lower the energy density of
the physical vacuum by an amount B ∼ Λ4

QCD ∼ 200 MeV/fm3. Drilling a
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perturbative vacuum bubble of volume V in this condensate costs an enor-
mous energy BV . The QGP, if formed in V , must counteract the physical
vacuum pressure B to prevent it from collapsing. This is only possible when
the temperature exceeds Tc ≈ (3B/KSB)1/4 ∼ 150 MeV.

The driving force behind the experimental effort at CERN and BNL over
the past 20 years has been to try to create the extreme conditions neces-
sary to produce and diagnose this new form of matter in the laboratory.
Over the past 15 years experiments at the AGS/BNL (

√
s = 5 AGeV) and

the SPS/CERN (
√
s = 20 AGeV) have searched systematically via a very

large set of observables for evidence of the QGP phase (see the article of C.
Lourenco in this volume). In these lectures I will focus on the most recent
developments in that search that has just begun at RHIC. I must emphasize
from the onset that most of the data shown here are of PRELIMINARY na-
ture and could change as better control over the systematic errors is achieved
in the next few years. Nevertheless, the new data are so exciting that it is
worth trying a first pass to give an overview and possible interpretation.

2 Geometry and Dynamics in A+A

The main obstacle in interpreting data on collisions of finite nuclei (at any en-
ergy) is that the matter created undergoes quantum (perhaps semi-classical)
many-body dynamics that may be approximated by thermodynamics only
over a limited (low-pT ) kinematic range. Experimentalists do not have the
luxury of lattice or perturbative QCD theorists of tapping into the infinite
gedanken volume or reservoir with a fixed temperature and pressure. Nuclear
collisions produce dense matter in a highly dynamical environment, and the
matter produced expands anisotropically near the speed of light. It is far
from clear whether local thermal and chemical equilibrium concepts apply,
and even so, over what domain of the 8-dimensional (xμ, pμ) phase space can
they be used.

Before a collision, the partons of the two colliding nuclei are locked into
a coherent field configuration. The dense virtual cloud of gluons and quarks
may be described in the colinearly factorized QCD approximation by A times
the known structure functions, fa/p(x,Q), of nucleons when the resolution
scale is high enough Q > 1 − 2 GeV. However, many-body initial-state in-
teractions could lead to strong modifications of this naive parton picture
(see the article of L. McLerran in this volume). The nuclear QCD fields
continue to interact after the nuclear valence quark pancakes pass through
each other. The interaction spans a space-time hyperbola over a proper time√
t2 − z2 ∼ 30 fm/c = 10−22 s. Then a “miracle” happens! The field quanta

hadronize in a way that is unfortunately not well understood. The dense fi-
nal hadronic debris can further interact as it expands toward the detector
elements. From CERES/SPS data [17] there is evidence that the in-medium
mass-width (spectral function) of vector mesons may change drastically [18].
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Hard probes (jets, leptons, photons, heavy quarks) are of special interest
because they provide “tomographic” tools with which one can map out this
evolution experimentally. Hard probes are effective “external” tomographic
probes because they are produced with a pQCD computable initial distri-
bution on a much shorter time scale, ∼ 1/m⊥, than the plasma formation
time, ∼ 1/3T . Modification of their known initial distributions therefore pro-
vides information on the medium through which they propagate in analogy
to conventional X-ray or positron tomography used in medicine [19]. The
primary advantage of RHIC over lower energy machines (AGS, SPS) is that
hard pQCD probes are produced at RHIC orders of magnitude more abun-
dantly over a significantly larger kinematic range. This greatly improves their
tomographic resolution power.

Figure 1 shows the rapid growth of high-pT Au+Au → π0 +X predicted
by pQCD from SPS to RHIC and LHC. As discussed for example in [20,21], it
is useful to decompose the nuclear geometry dependence of invariant hadron
distributions produced in A + B → h + X at impact parameter b into a
phenomenological “soft” and pQCD calculable “hard” components as

E
dNAB(b)

d3p
= Npart(b)

dNsoft(b)
dyd2pT

+Ncoll(b)
1
σpp

in

dσhard(b)
dyd2pT

, (1)

where Ncoll(b) = σpp
inTAB(b) is the number of binary NN collisions and

Npart(b) is the number of nucleon participants at impact parameter b. The
nuclear geometry of hard collisions is expressed in terms of the Glauber pro-
file density per unity area TAB(b) =

∫
d2r TA(r)TB(r − b), where TA(r) =∫

dz ρA(r, z) (see Fig. 2). The hard part scales with the number of binary
collisions ∝ A4/3 because their probability is small built up from all possi-
ble independent parton scattering processes. The soft part scales with only
Npart ∝ A1 because their probability is large and therefore “shadowed”.

The (textbook) computable lowest-order pQCD differential cross section
for inclusive p+ p → h+X invariant cross section is given by

Eh
dσpp→h

hard

d3p
=K

∑
abcd

∫
dxadxbfa/p(xa, Q

2
a)fb/p(xb, Q

2
b) (2)

dσ

dt̂
(ab → cd)

Dh/c(zc, Q
2
c)

πzc

where xa = pa/PA, xb = pb/PB are the initial momentum fractions carried
by the interacting partons, zc = ph/pc is the momentum fraction carried by
the final observable hadron, fα/p(xα, Q

2
α) is the proton structure function

for parton of flavor α, and Dh/c(zc, Q
2
c) is the fragmentation function for

the parton of flavor c into h. The UA1 data on pp̄ hadron production with
pT > 2 GeV can be well reproduced with this pQCD model expression.

The soft (pT < p0 ∼ 2 GeV/c) nonperturbative contribution to the hadron
yields can only be modeled phenomenological. The Dual Parton Model [22,23]
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Fig. 1. Invariant distribution of hard pQCD produced π0 in central Au + Au colli-
sions as a function of c.m. energy via Eqs. (1, 3) with CTEQ5M structure functions,
K=2 factor, scale Q = pT /2, and multiplied by nuclear overlap TAB = 24/mb. The
dashed curve shows the contribution from gluon jet fragmentation only

and the LUND string model [24,25] are the most extensive and successful low-
pT multiparticle phenomenologies. The basic pQCD matrix elements have
been encoded into a Monte Carlo code, PYTHIA [26]. A variant of soft string
phenomenology tuned to pp, pp̄ data, with the hard part taken from PYTHIA,
a hadronization scheme taken from the LUND JETSET hadronization, and
an eikonal nuclear multiple collision geometry were combined into the Monte
Carlo A+B collision generator in HIJING [27]. HIJING has been used over the
past decade to predict many observables at RHIC [20,27,28]. The separate soft
and hard components in HIJING with a fixed A,

√
s independent scale p0 = 2

GeV/c are illustrated in Fig. 3. Hard gluons in the LUND hadronization
scheme are represented by kinks in the strings between valence quarks and
diquarks of the Npart(b) interacting baryons in A + B collisions at impact
parameter b. In this class of models no final-state interactions are taken into
account.

The physics in A + A reactions that must be understood in order to be
able to interpret observables in terms of the properties of dense QCD matter
requires extending the above class of event generator models to include
1. Initial Conditions: The formation physics responsible for creating an in-

coherent gas of gluons and quarks from the initial virtual nuclear fields;
2. Parton Transport: The (xμ, pμ) phase space evolution of that parton gas

toward equilibrium;
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3. Hadronization: The dynamical mechanisms that convert the parton de-
grees of freedom in the confining physical vacuum into the observable
hadronic ones;

4. Hadron Transport: The final-state interactions of the expanding dense
hadronic matter prior to “freeze-out”.

Each problem is fascinating in its own right but only bits and pieces are un-
derstood or phenomenologically mapped out up to now. There exists unfortu-
nately no complete computable dynamical theory (like Magneto-Hydrodyna-
mics for QED plasmas) that consistently takes into account all four elements.
QCD is believed to be THE theory, but it is still not computable except at
high pT where perturbative or classical methods may apply. There exist in-
stead several different dynamical “scenarios” to describe A+A that attempt
to patch together different approximation techniques and phenomenological
models to address all the physics issues in turn.

Two generic approaches to A+A can be classified by whether the Initial
Conditions are (i) computed (via pQCD or classical Yang-Mills (cYM)) and
subsequent evolution followed by a dynamical scenario for 2-4, or (ii) the
initial conditions are fit by extrapolating final observables backwards via a
suitable dynamical scenario. At lower energies (AGS, SPS) only the second
approach is available since the momentum scales are simply too low to apply
either pQCD or cYM. At collider energies RHIC and beyond, the copious
production of mini-jets [20,27,34,35,36] with pT > p0 ∼ 2 GeV shown in Fig.
1 makes it possible for the first time to pursue the first approach via pQCD
Eq. (3). At very high energies classical Yang Mills theory [37,38,39,40,41,42]
provides a general method to compute the Formation Physics which reduces
to pQCD at high pT . Whether RHIC or LHC energies are high enough is an
open question.

The second approach, trying to “fit” the initial conditions by extrapolat-
ing the final distributions backwards with a suitable dynamical model has
been traditionally based on relativistic hydrodynamics [43,44,45,46]. The ap-
proximate longitudinal boost invariant boundary conditions at ultra-relativistic
energies simplify hydrodynamic equations greatly as pointed out by Bjorken
[48]. For μB = 0 the hydrodynamic equations are,

∂μT
μν = 0 , Tμν(x) = uμuν(ε+ P ) − gμνP ,

where ε(x), P (x) are the proper energy density and pressure and uμ(x) is the
four velocity field of the fluid. The central assumption is that thermal and
chemical equilibrium are maintained locally in spite of the possible large gra-
dients in the fluid variables. The great advantage of hydrodynamics is that
it provides a covariant dynamics depending only on the equation of state
P (T (x)) that is directly related to the lQCD predictions. When a specific
space-time freeze-out hypersurface is assumed together with the assumption,
the Cooper-Frye prescription [49,50,51,52,54], the computed four-fluid veloc-
ity field can be used to predict the final anisotropic flow pattern of hadrons.
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Since this process is assumed to be reversible, the final distributions together
with an assumed freeze-out hypersurface can be used to compute the ini-
tial conditions on any desired initial hypersurface. The disadvantage of this
approach as emphasized in [55] is that both the initial and final freeze-out
hypersurfaces must be guessed. Also finite mean-free-path physics is outside
the scope of ideal hydrodynamics, and transport theory solutions [55] do not
support “sharp” freeze-out hypersurfaces. Thus the inversion of data in this
way to deduce the initial conditions is not unique. The neglect of dissipa-
tive effects such as viscosity also makes it impossible to relate central A+A
to peripheral and light-ion data, especially p + p. Finally, the assumption
of homogeneous or slowly spatially varying initial conditions is questionable
because of copious mini-jet production [56]. In spite of all the above theoret-
ical problems, initial conditions for RHIC have been successfully constructed
that lead via ideal hydrodynamics and idealized Cooper-Frye freeze-out to
distributions that reproduce amazingly well many of the low-pT observables
at RHIC [57,58,59,60] (see the next section).

In order to bring the freeze-out assumption under better theoretical con-
trol covariant, nonequilibrium transport theory [61] must be solved. Until
recently, only simplified 1+1D Bjorken transport theory was soluble in the
linearized relaxation time approximation (see [62] and refs. therein). This
is due to the great numerical complexity of the 3+1D nonlinear Boltzmann
equations [55,63]:

pμ
1∂μf1 =

∫
2

∫
3

∫
4

(f3f4 − f1f2)W12→34δ
4(p1 + p2 − p3 − p4) + S(x,p1), (3)

where W is the square of the 2 → 2 scattering matrix element, the integrals
are shorthands for

∫
i

≡ ∫
g d3pi

(2π)3Ei
, where g is the number of internal degrees

of freedom, while fj ≡ f(x,pj) is the parton phase space distribution. The
initial conditions are specified by a source function S(x,p) that corresponds
to the assumed initial conditions.

Yang Pang’s parton subdivision technique [63,64] and the speed of cur-
rent workstations have finally made it possible to solve Eq. (3) numerically.
(codes can be obtained from the OSCAR Web site [65]). The solutions [66,67]
prove that elastic parton scattering with pQCD rates is insufficient at RHIC
to keep the plasma in local equilibrium due to the extreme rapid longitudinal
“Hubble” expansion of the system [62]. Unfortunately, there exists no prac-
tical algorithm at this time to solve the more nonlinear inelastic transport
equations involving gg → ng processes. Therefore, if hydrodynamics applies
to A+A at RHIC, then most likely strong nonperturbative mechanisms must
be assumed to exist on faith or hypothesis (see the article of E. Shuryak in
this volume). This is an important open theoretical problem.

I would also like to call attention to a new class of hydrodynamic models
[68] that side-step the final freeze-out problem by assuming that local equi-
librium is maintained only up to an intermediate hyper-surface, just after
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hadronization on a T = Tc − ε isotherm. Using that intermediate freeze-out
as the initial conditions of a hadronic transport theory, the subsequent evo-
lution of the hadronic gas toward a dynamical freeze-out is then determined
by known hadronic cross sections via URQMD [69,70].

3 Preliminary Results from RHIC

3.1 Global Constraints on Initial Conditions

The first results from RHIC, from PHOBOS [5], shown in Fig. 4, demonstrate
that the energy dependence of the scaled charged particle (pseudo)rapidity
density, dNch/dη/Npart, is different from p+ p and p+ p̄ systematics.
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Fig. 4. Measured pseudorapidity density normalized per participant pair for central
Au+Au collisions (PHOBOS [5,29]). Systematic errors are shown as shaded areas.
Also shown are results of Pb+Pb data (CERN SPS), HIJING [20] simulations and
a parameterization of pp data

Approximately 50% more particles are produced at mid rapidity per par-
ticipating baryon in central Au + Au collisions then in p + p at the same
energy per baryon. The curve shows that the two component HIJING model
predicted well this result. However, as shown in Fig. 5, another model EKRT
[36], was also found to predict the same multiplicity as HIJING for central
collisions. In Ref. [20], we proposed that the centrality dependence of this
observable could differentiate between these competing models of the initial
conditions. The new data of PHENIX and PHOBOS [33] verified this predic-
tion. While neither model accounts quantitatively for the data, but the two
component HIJING model with its combined A1 and A4/3 dependence bet-
ter describes the rate of increase of the scaled multiplicity with participant
number. The observed increase of the scaled multiplicity with energy relative
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to p + P and with participant number dependence supports the prediction
of copious mini-jet production at RHIC. This is one of the necessary, though
insufficient, conditions to form a dense gluon plasma in A+A.

The difference between HIJING and EKRT is that in the latter it is
assumed that all the produced entropy (multiplicity) arises at RHIC energies
from hard pQCD processes. EKRT assume that there is no significant soft
component, i.e. dNsoft � dNhard in Eq. (1). However, the hard component
is cutoff at scale p0 that is allowed to vary with both A and hence Npart and
with energy

√
s based on the following assumption: independent and hence

TAB(b) proportional numbers of gluons with pT > p0 are produced only in
“resolvable” domains of finite area π/p2

0. There are p2
0R

2 such domains in
the transverse plane in a central nuclear collision. This so called “final-state
saturation” model is then specified by

dNg

dy
=
Ncoll(b = 0)1

σpp
in

∫ ∞

p0

d2pT
dσA+A→g

hard

dyd2pT
= βp2

0R
2 . (4)

For β = 1 assumed in EKRT, the solution for the saturation scale is p0(
√
s,A)

≡ psat ≈ 0.2A0.13(
√
s)0.19. This predicts dNg/dy ∝ A0.93 in spite of the ap-

parent proportionality of hard processes to A4/2. The flat (dNg/dy)/Npart ∼
A∼0 independence of the scaled multiplicity is a general feature of saturating
QCD models of the initial conditions (see also the article of L.McLerran in
this book). Such a flat behavior is, however, ruled out by the present data at
RHIC.

An alternate (so-called initial-state saturation) model was proposed by
Kharzeev and Nardi (KN [71]) based on the nonlinear QCD evolution equa-
tions of [72]. In this model of nuclear initial conditions, the number of lib-
erated gluons is proportional to the number of virtual gluons participat-
ing in the reaction on a scale p0. The produced number is then taken to
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fNpartxG(x, p0) in terms of the nucleon gluon structure function, where
f ∼ 1.2 is a factor on the order of unity. Since the interaction probability
is proportional to the running coupling αs(p0), the initial-state saturation
condition is defined by

dNg

dy
= fNpartxG(x, p0) = f

2
3π2αs(p0)

p2
0R

2 . (5)

The main difference between initial- and final-state saturation models is
therefore due to the logarithmic dependence on p0 introduced by the run-
ning coupling. In [71] a simple ansatz was assumed for xG(x,Q) ∝ logQ/Λ
based on the linear (DGLAP) evolution equations. With this ansatz KN pre-
dicted a participant dependence surprisingly close to the observed data in
Fig. 5.

However, the x independent ansatz of KN used for xG(x,Q) for the scale
Q ∼ 1 GeV/c is a guess that cannot be supported by the available ep HERA
data. At small x ∼ 0.01 and low Q ∼ 1 the pQCD factorization analysis of
deep inelastic e+p reactions breaks down and xG acquires a 100% systematic
error bar as shown in Fig. 6. Initial-state saturation is a theoretically sound
model only at very high energies or nuclei with A � 200, when Q > 2 GeV/c
and the errors based on pQCD analysis become manageable.

While it is premature to conclude which approach is least wrong (see
also [83]), in my opinion, it appears that the global multiplicity data and
its centrality dependence can be used as indicators that the initial gluon
rapidity density at RHIC is between HIJING’s 200 and EKRT’s 1000. The
corresponding gluon density, ρg(τ) = dNg/dy/(τπR2) is thus ∼ 10 − 50/fm3

at the corresponding formation time 1/p0 = 0.1 − 0.2 fm/c. Thus RHIC may
have indeed created the densest gluon plasma ever in the laboratory. As I
emphasize in a later section, fortunately there are many other observables,
especially jet quenching that provide independent checks of this possibility.

It is important to emphasize that similar results for the multiplicity in
central collisions in HIJING and EKRT are purely coincidental because the
models differ by a factor of five on the initial gluon density. This is compen-
sated for by the underlying very different hadronization schemes assumed.
HIJING creates a large fraction of the observed hadrons at RHIC through its
soft string fragmentation scheme, while EKRT assume that entropy conser-
vation implies that dNπ ≈ dNg. The lack of a detailed hadronization theory
can only be overcome phenomenologically by testing experimentally all the
ramifications of any particular model.

Another observable that was suggested in [20] to help differentiate models
of initial conditions is the shape and scaling of the whole rapidity distribution
(see Fig. 7).

It is seen that HIJING predicts a somewhat narrower and stronger cen-
trality dependence than observed by PHOBOS. This may be related to the
baryon stopping power at RHIC. Unfortunately no predictions are available
for either the initial or final saturation models on the predicted shape of the
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rapidity distribution. This observable is especially sensitive in those models
to the x dependence of the saturation criteria.

The total integrated charge particle multiplicity is shown in Fig. 8. RHIC
has produced about 4000 charged particles in Au+Au at 130 AGeV. The non-
linear enhancement near central collisions is interpreted in terms of HIJING
as due to the onset of the mini-jet component.
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Fig. 8. PHOBOS total charged particle multiplicity vs. nucleon participant number
[33]

3.2 Global Barometric Observable ET /Nch

An important global barometric measure of the internal pressure in the ultra-
dense matter produced is the average transverse energy per charged particle.
PHENIX data are shown in Fig. 9 compared to WA98 data from CERN.
What is most amazing is that ET /Nch ≈ 0.8 GeV almost independent of

√
s

from 20 to 130 AGeV and independent of centrality! HIJING predicts that
it should rise from 0.8 to 0.9 GeV from CERN to SPS due to the enhanced
mini-jet activity at RHIC. The EKRT initial state saturation model predicts
a growth of this quantity in the initial state by about a factor of 3. The
reason that EKRT remains viable after these data is that the assumed entropy
conservation implies that a large amount of pdV work due to longitudinal
expansion is performed by the plasma. In 1+1D hydrodynamics the energy
per particle ε/ρ ≈ 2.7 T decrease as the system expands and cools T ∼ 1/τ1/3.
If the freeze-out is assumed to occur at all energies and impact parameters
in A + A on a fixed decoupling isotherm, then the energy per particle will
always be the same. At RHIC this global transverse energy loss from the
initial state is predicted to be about a factor 3. The theoretical problem of
justifying hydrodynamics and the freeze-out prescription itself discussed in
the previous section comes back to haunt us here [57]. The observed NULL
effect in ET /Nch is very interesting because it is so difficult to obtain in any
transport theory with finite pQCD relaxation rates.
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3.3 Discovery of Jet Quenching

One of the predicted signatures [28,73,74] of dense matter formation is the
suppression of jets and their high-pT hadronic debris due to energy loss of
the jet in the medium. However, the search for this effect at SPS by WA98
yielded the opposite result as shown in Fig. 10. Even a modest dEdx = 0.2
GeV/fm is completely ruled out by the data [81]. The problem is that at
lower energies, multiple initial-state elastic scattering leads to a random walk
in transverse momentum. This enhances the pT of the scattered partons so
that 〈p2

T 〉 = p2
0 +A1/3δp2

T . This so-called Cronin effect has been well studied
in p + A reactions up to 800 GeV. At lower energies the very steep fall of
the high-pT tail makes the distribution extremely sensitive to this modest pT

enhancement. When convoluted through two nuclei, Wang predicted [81] that
the Cronin enhancement at SPS in Pb+Pb should be a factor of two as verified
in Fig. 11. What is plotted there is the ratio of the observed invariant cross
section to the scaled binary collision number, Ncoll(b), scaled invariant cross
section in p+p. Unity corresponds to naive superposition of Ncoll independent
elementary p + p hard processes in the absence of any nuclear effects. The
ratio starts below 1 since the low-pT distribution grows only with the number
of participants (divided by two) and Npart(0)/2Ncoll(0) ≈ 0.15.
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Fig. 10. Single-inclusive π0 spectra in central S+S at Elab = 200 GeV and Pb+Pb
collisions at Elab = 158 GeV. The solid lines are pQCD calculations (Wang [81])
with initial-kT broadening and dashed lines are without. The S + S data are from
WA80 and Pb + Pb data are from WA98 The dot-dashed line is obtained from the
solid line for Pb + Pb by shifting pT by 0.2 GeV/c

In stark contrast to the SPS enhancement of high-pT pions, a factor of
two or more suppression of pT > 2 GeV hadrons was reported by STAR [3,84]
and PHENIX [85].

Fig. 12 shows that for pT < 2 GeV a similar trend of increase due to the
gradual transfer from participant to binary scaling is taking place as at SPS,
but for pT > 2 GeV the ratio for charged particles π± + K± + p± starts to
drop again and reaches ∼ 0.5 at 4 GeV/c.

The PHENIX data [85] show an even more dramatic quenching pattern
for identified π0 in Fig. 13. In this experiment, it was further verified that
“peripheral” collisions are not quenched while central ones are. Fig. 14 shows
that the suppression factor may reach a factor of three at 3 GeV/c. In this
plot the ratio is not relative to pp data extrapolated to 130 GeV, but to
“peripheral” collisions where the average number of participants and binary
collisions is only ≈ 20. In contrast Npart ≈ 360 and Ncoll ≈ 857 for the central
collisions. It must be emphasized that current systematic errors are still much
larger than statistical ones, but it is clear that the combined information from
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Fig. 11. The nuclear modification
factor for hadron spectra in central
Pb + Pb collisions at the CERN-
SPS exceeds unity at high-pT due to
the Cronin effect. The solid line is a
pQCD calculation by Wang [83]

Fig. 12. The nuclear modification factor
for charged hadrons in central Au + Au
RHIC from STAR [3,84]. In contrast to
SPS, the high-pT charged hadrons are
suppressed

two independent experiments in Figs. 12 and 14 imply that something new
has been discovered in A + A collisions at RHIC. I believe that this is the
predicted jet quenching as discussed in the next chapter.

The reason that this discovery is perhaps even more exciting than the
famous J/ψ suppression effect discovered by NA50 [86,87] at the SPS is
that J/ψ suppression was also seen in p + A. The cold nuclear suppression
mechanism in p+A is called “normal”. The enhanced suppression in Pb+Pb
is “anomalous” because it is more than if the normal p + A suppression
pattern is extrapolated to A+A. That this is not theoretically fool proof was
pointed out by Qiu et al. [88]. They showed that including radiative energy
loss in cold nuclei could lead to non-linear enhancement of J/ψ suppression
by decreasing their formation probability. Only a rather schematic model
was presented, but it emphasizes the necessity of improving considerably the
theory of the “normal” processes associated with heavy quark propagation
through with nuclei. The situation is rather similar theoretically with regard
to the Cronin effect. There also only rather schematic models are available
to simulate the effect.

The big difference between the two cases is that for J/ψ the “normal”
and “anomalous” components work in the same direction. The premium is
thus high on developing an accurate theory “normal” nuclear suppression.
In the jet quenching case, on the other hand, the “normal” Cronin effect
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bands indicate the possible range due to the systematic error on Ncoll

works in the opposite direction to the “anomalous” new jet quenching mech-
anism. Of course, there are possibly other “normal” effects, such as gluon
(anti?)shadowing, that may work in either direction at high pT . To map out
all the “normal” physics components will require detailed systematic mea-
surements of p+A at RHIC as done at the SPS. As a final remark, I want to
emphasize the “normal” component of the dynamics is not dull run-of-the-
mill background, but fundamentally interesting many-body QCD physics in
its own right and deserves considerable more attention.

3.4 Where Have All the Baryons Gone?

One of the puzzling feature of Figs. 12 and 14 is that pions appear to be
more quenched than the sum of charged particles. Usually we assume that
pions are the most abundant hadron species at high pT since both quark
and gluon fragmentation functions prefer to make the lightest mesons [91,92].
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at SPS in Fig. 11) is due to jet quenching in the ultra-dense matter formed at RHIC
[21,27,73,28,75,83,89]

Surprisingly, the preliminary PHENIX data [90] on identified high-pT hadron
spectra suggest from Fig. 15 that baryons may be the most abundant species
above pT > 2 GeV/c. One possible source of such a non-pQCD like flavor
distribution could be hydrodynamic transverse flow. For a longitudinal boost
invariant (Bjorken) expansion with a transverse flow velocity field, v⊥ =
tanh(ηr), the general formula [93] for the differential particle number is

E
dNs

d3p
=

d

2π2

∫ 1

0
dζ rf (ζ)τf (ζ)

{
− drf

dζ
mTK1

(
mTchηr

Tf

)
I0

(
pTshηr

Tf

)

+
dτf
dζ

pTK0

(
mTchηr

Tf

)
I1

(
pTshηr

Tf

)}
, (6)

where d = 2s + 1 is the degeneracy factor, ηr = Artanh(v⊥(z = 0)) is the
transverse fluid rapidity and (rf (ζ), τf (ζ)) is a parameterization (counter-
clockwise) of the freeze-out surface (isotherm of temperature Tf ).

Solutions for freeze-out surfaces with arbitrary transverse velocity fields
v⊥(ξ) can be obtained by solving relativistic hydrodynamics. For the simplest
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case with v⊥ = tanh ηr a constant and an isotherm freeze-out on a proper
time hypersurface τf [94],

dNs

dyd2pT
=

d

4π2R
2τfmTK1

(
mT cosh ηr

Tf

)
I0

(
pT sinh ηr

Tf

)
pT�m→ const× d exp

(
− pT

Tf exp(ηr)

)
, (7)

which corresponds to a blue-shifted effective temperature Tfe
ηr . This is the

uniform rapidity, transverse boosted Bjorken sausage parameterization of nu-
clear collision distributions.

Evidence for increased transverse flow phenomena at RHIC relative to
SPS comes from low-pT STAR data [99] shown in Figs. 16 and 17. The data
can be fit up to pT < 1 GeV/c with a rather radial flow velocity v⊥ ∼ 0.6 c
that is significantly larger than the radial flow ∼ 0.4 c deduced from similar
SPS spectra.

Another important experimental tool to search for collective flow effects
is to study anisotropic multiparticle emission patterns [95,96,97,98]. A par-
ticularly useful measure of collective behavior in ultra-relativistic energies
has turned out to be the differential second Fourier component [96] of the
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azimuthal distribution:

dNh(b)
dyd2pT

=
dNh(b)
dydp2

T

1
π

(
1 + 2vh

2 (pT) cos(2φ)
)
, (8)

where φ is measured relative to a “reaction plane” event by event as deter-
mined in [98].

Azimuthal or “elliptic” flow results from the initial spatial anisotropy
of the dense matter in semi-peripheral A + A collisions. The hydrodynamic
model predicts an elliptic flow pattern at RHIC [58,59] that can be approxi-
mately parameterized as

vs
2(pT) ≈ tanh(pT/(10 ± 2 GeV)) . (9)

Up to about pT < 1 GeV, this agrees remarkably well with STAR data.
At high pT this hydrodynamic flow component breaks down because of the
emergence of the hard pQCD hadrons.

The transverse boosted Bjorken sausage model Eq. (7) predicts that
asymptotically the baryon/meson ratios p/π+ = p̄/π− → 2 for any flow
velocity because nucleons have two spin states. However, numerically this ra-
tios exceed unity only at pT > 3 − 4 GeV. Thus transverse flow alone cannot
account for the anomalous baryon dominance of high-pT spectra in Fig. 15
as emphasized in [92].

Another observation [99] that possibly provides a hint that the answer to
the puzzling result may lie in novel baryon dynamics at RHIC can be seen in
Figs. 18 and 19. As was shown by Kharzeev [101], the energy and rapidity de-
pendence of the inclusive baryon production at mid-rapidity can be obtained
using Mueller’s generalized optical theorem in the double Regge limit. Here,
the exchanges of a Pomeron and a MJ

0 baryon-anti-baryon “junction” pair
lead to the following form for single mid-rapidity baryon production

EB
d3σ(1)

d3pB
= CBfB(m2

t )
(s0
s

)1/4
cosh(y/2) , (10)

where CB is a constant that reflects the couplings of the Reggeon and Pomeron
to the proton, fB(m2

t ) is an unknown function of mt and s0  1 GeV is a
Regge energy scale. The cosh(y/2) rapidity dependence and the 1/ 4

√
s energy

dependence follow from the assumed intercept [102], αMJ
0
(0) ≈ 1/2. In con-

trast to simpler diquark breaking models as in the Dual Parton Model, the
multiplicity of junction also enhanced events is enhanced by a factor of 5/4
in p+ p, and the strangeness content is also enhanced by a large factor. The
junction mechanism for baryon number (vs. valence quark number) trans-
port predicts for the unique possibility of producing S = −3 Ω− baryons at
midrapidity, as were observed at the SPS in WA97. In the Monte Carlo event
generator HIJING/BB̄ [65,100], baryon junctions are implemented in terms
of Y shaped strings spanning valence quarks.
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Fig. 18. The valence proton rapidity density measured by STAR [99] at RHIC as
a function of Npart. Preliminary BRAHMS data are also indicated

The junction is a topological knot in the gluon field connecting the color
flux from three quarks into a color singlet state [102]. The intriguing aspect of
junctions is that the conserved baryon number resides in the gluon knot and
not in the valence quarks [101]. In a nuclear collision some or all of the valence
quarks may fragment into mesons. However, the gluonic junctions insure that
baryon number is conserved. The understanding of the dynamics of junction
exchange and pair production is still rather primitive, but the consistency of
the baryon stopping power at SPS and now RHIC with HIJING/BB̄ predic-
tions suggest that baryon dynamics at central rapidities may be especially
interesting at RHIC. See Ref. [103] for a discussion of possible novel junction
network physics that may lead to femto-scale buckyball and even CP odd
junction network production in A+A.

3.5 Quenching of Elliptic Flow

As seen in Figs. 17 and 20 strong elliptic flow was discovered at RHIC consis-
tent with hydrodynamic predictions at low transverse momentum pT < 1
GeV. However, the preliminary data from STAR [104] shows that above
pT > 2 GeV the elliptic flow saturates and the azimuthal asymmetry de-
viates more and more from hydrodynamic behavior as seen in Fig. 21. This
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Fig. 19. Predicted valence proton rapidity density at RHIC from [100] showing
a factor of two enhancement expected if baryon junction exchange is included in
HIJING/B. The dashed curves are result of HIJING including only standard LUND
diquark fragmentation

information provides insight into how hydrodynamic behavior breaks down
at high pT due to the finite energy loss of partons in the plasma. As shown
in detail in [21] the saturation pattern at high pT depends on the energy
dependence of the gluon energy loss as well as on the geometry of the plasma
density at finite impact parameters. It therefore provides tomographic infor-
mation about the density profile and its evolution in A + A. See section 4.4
for more details.

3.6 Where Did the Slowly Burning Plasma Log Vanish?

The last major RHIC result that I highlight here is on pion interferometry.
Relativistic combustion theory [105,106,93] predicts that if there were a suffi-
ciently rapid cross over between the QGP and hadronic phases of ultra-dense
matter, then a deflagration burn front may appear between two phases. The
main characteristic of that burn front is its very small velocity in case the
entropy density jump across it is sufficiently large and no high degree of
non-equilibrium supercooling arises. Even with a smooth cross-over transi-
tion, such slowly burning plasma solutions were shown to exist as long as the
width of the transition region is (ΔTc/Tc < 0.08). The lifetime of a Bjorken
plasma log is therefore significantly enhanced τ ∼ R/vd, where vd ∼ 1/25 is
the small deflagration velocity in the static 1+1D case.
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Fig. 20. Saturation of elliptic flow as measured by STAR [104]. Curves are the
extrapolations of the hydrodynamic model predictions from [58,59] to high pT

 [GeV/c]tp
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

) t
(p 2v

0

0.05

0.1

0.15

0.2

0.25

0.3
Charged particles

/dy=1000
g

Hydro+GLV,dN

/dy=500
g

Hydro+GLV,dN

/dy=200
g

Hydro+GLV,dN

Preliminary

Fig. 21. Curves show saturation of elliptic flow due to finite energy loss of partons
in a gluon plasma with rapidity density dNg/dy = 200, 500, 1000 from [21]

This characteristic time delay of the hadronization from a QGP state
was suggested in [107,108] to be testable via pion interferometry. In Ref. [93]
the 3+1D hydrodynamic equations were solved to study this plasma “stall”
phenomenon in detail.

The two-pion correlation function measures the coincidence probability
P (p1,p2) of two (identical) bosons with momenta p1, p2 relative to the prob-
ability of detecting uncorrelated particles from different events,

C2(p1,p2) =
P (p1,p2)
P (p1)P (p2)

. (11)
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If the average 4–momentum is denoted as Kμ = (pμ
1 + pμ

2 )/2 and the relative
4–momentum as qμ = pμ

1 − pμ
2 , then under the assumption that the particle

source is chaotic and sufficiently large,

C2(p1,p2) = 1 +

∣∣∣ 1
(2π)3

∫
Σ

dΣ ·K exp [iΣ · q] f (u·K
T

)∣∣∣2
E1

dN
d3p1

E2
dN

d3p2

, (12)

where [47]

E
dN
d3p

=
1

(2π)3

∫
Σ

dΣ · p f
(u · p

T

)
(13)

is the single inclusive momentum distribution, f(x) = (ex −1)−1, and uμ the
fluid 4–velocity. The integrals run over the assumed freeze–out hypersurface.
In general, that hypersurface is represented by a 3–parametric (4–vector)
function Σμ(ζ, η, φ), and the normal vector on the hypersurface is determined
by

dΣμ = εμαβγ
∂Σα

∂ζ

∂Σβ

∂η

∂Σγ

∂φ
dζ dη dφ , (14)

where εμαβγ is the completely antisymmetric 4-tensor. For the common iso-
therm freeze-out temperature Tf hypersurface, the fluid velocity generally
varies uμ = uμ(Σ).

For the Bjorken cylinder geometry, it is useful to restrict consideration to
particles emitted at midrapidity, Kz = qz = 0. Rotational symmetry around
the z–axis in central collisions makes it possible to choose the average trans-
verse momentum as K⊥ = (K, 0, 0), and consequently, C2(K, q out, q side) is a
function of three independent variables only. The so called out and side pro-
jections of the relative momenta are q out = (q out, 0, 0), q side = (0, q side, 0).
As shown in [107,108] the width, 1/Rside, of the correlation function in q side is
a measure of the transverse decoupling or freeze-out radius, while the width
1/Rout of the q out correlation function is also sensitive to the duration of
hadronization, Δτ ,

R2
out ≈ R2

side + v2Δτ2 .

Thus a QGP stall would manifest experimentally in Rout � Rside. In [93] it
was found that for possibly realistic parameters, Rout/Rside ∼ 2 − 3, could
be observed if a QGP stall occurred.

With this “warm-up” review of pion interferometry, we are now ready for
the rude awakening from ideal gedanken considerations with the first splash
of “cold” RHIC pion interferometry data shown in Fig. 22. The preliminary
PHENIX data show that Rout ∼ Rside and even more disturbing all the
deduced interferometry parameters are virtually identical to values seen at
the AGS and SPS. To add insult to injury, it appears that Rout < Rside for
pT > 0.4 GeV. Preliminary STAR data [3] show the same tendency.

Of course, scenarios may be invented to “explain” the data a-posteriori,
but if these data are confirmed by further measurements, then they are in-
deed surprising and call into question our picture of the space-time evolution
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Fig. 22. Preliminary PHENIX pion interferometry data [109] vs. different projec-
tions of the relative momenta. Similar preliminary STAR data [3] were also shown
at QM01. Unlike predictions [93] there is no hint of the expected stall or time delay
of the QGP transition

of A+A. That this problem is not restricted to idealized hydrodynamics can
be seen from the results of Ref. [110]. It was shown that Rout > Rside is also
predicted in a calculation where the entropy jump is small and pion decou-
pling is dynamically handled via URQMD. Among the theoretical questions
that should now be further investigated is whether the pion interferometry
theory based on chaotic ensembles [111] is in fact applicable to A + A. An-
other question that needs further study is whether the assumed ensemble of
initial conditions was too restrictive and whether highly inhomogeneous and
turbulent initial conditions apply [56].

4 Jet Quenching: Theory

Having had a brief tour of some of the interesting new data harvested from
RHIC during the first round of experiments, I turn next to the more specific
theoretical problem of computing the energy loss per unit length of a fast
parton penetrating a finite, expanding quark-gluon plasma. As I emphasized
above, high-pT many-body pQCD physics is a new frontier at RHIC and
higher energies. This requires the development of the non-Abelian analogue
of the radiative energy loss theory familiar from classical E&M. The inter-
esting new twist is that we have no external beams of quarks or gluons and
the medium is very thin due to the fact that nuclei are tiny. Also the for-
mation time physics of Landau-Pomeronchuk-Migdal (LPM) results in major
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Fig. 24. Three first-order (single Born) direct and four surviving (double Born)
virtual or contact amplitudes [77] from which the D̂n and V̂n components of the
reaction operator in Eq. (16) are derived in [75]

and constructed by repeated operations of 1̂, D̂i, or V̂i corresponding to no,
direct, or virtual interactions at scattering center i

Ai1···in
(x,k, c) =

n∏
m=1

(
δ0,im

+ δ1,im
D̂m + δ2,im

V̂m

)
G0(x,k, c) .

Here G0 is the initial hard q + g color matrix amplitude. In the inclusive
probability each class contracts with a unique complementary class

Pn(x,k) = Āi1···in(c)Ai1···in
(c)

with the complementary class constructed as

Āi1···in(x,k, c) ≡ G†
0(x,k, c)

n∏
m=1

(
δ0,im V̂

†
m + δ1,imD̂

†
m + δ2,im

)
.
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Fig. 25 shows an example of how this formalism works at 4th order in opacity
for elastic and inelastic inclusive distributions.
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Fig. 25. Example of graphs constructed via D̂i, V̂i that contribute to the 4th order
in opacity in elastic and inclusive inelastic final-state interactions. The longitudinal
depth of active scattering centers are denoted by zi and inactive (created with 1̂i) by
(zi). The form of D̂i, V̂i depend on the process type but the tensorial bookkeeping
of partial sums of amplitudes is the same

Direct interactions enlarge rank n− 1 class elements as follows:

D̂nAi1···in−1(x,k, c) ≡ (an + Ŝn + B̂n)Ai1···in−1(x,k, c)

= anAi1···in−1(x,k, c) + ei(ω0−ωn)znAi1···in−1(x,k − qn, [c, an])−(
−1

2

)Nv(Ai1···in−1 )

Bn e
iω0zn [c, an]Tel(Ai1···in−1),

where Bn = H − Cn = k/k2 − (k − qn)/(k − qn)2) is the so-called Bertsch-
Gunion amplitude for producing a gluon with transverse momentum k in
an isolated single collision with scattering center n. The momentum transfer
to the jet is qn. The notation ωn = (k − qn)2/2ω, for a gluon with energy
ω and an is the color matrix in the dR dimensional representation of the
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jet with color Casimir CR. Nv =
∑n−1

m=1 δim,2 counts the number of virtual
interactions in Ai1···in−1 .

Unitarity (virtual forward scattering) corrections to the direct processes
involve the sum of four double born contact diagrams in Fig. 24 that enlarge
rank n− 1 classes as follows:

V̂n = −1
2
(CA + CR) − anŜn − anB̂n = −anD̂n − 1

2
(CA − CR). (15)

This key operator relation between direct and virtual insertions that we dis-
covered in [75] makes it possible to solve the problem algebraically.

The tensor classification of classes of diagrams makes it possible to con-
struct the distribution of radiated gluons in the case of n interactions, Pn,
recursively from lower rank (opacity) classes via a “reaction” operator

Pn = Āi1···in−1R̂nAi1···in−1 , R̂n = D̂†
nD̂n + V̂n + V̂ †

n . (16)

Using the key identity (15), the reaction matrix simplifies to

R̂n = (D̂n − an)†(D̂n − an) − CA= (Ŝn + B̂n)†(Ŝn + B̂n) − CA.

The next major simplification occurs because both Ŝ and B̂ involve the
same gluon color rotation through ifcand. This reduces the color algebra to
multiplicative Casimir factors

Āi1···in−1(Ŝ†
nŜn − CA)Ai1···in−1

= CA (Pn−1(k − qn) − Pn−1(k)) = CA

(
eiqn·b̂ − 1

)
Pn−1(k)

Āi1···in−1B̂†
nB̂nAi1···in−1 = 0

2Re Āi1···in−1B̂†
nŜnAi1···in−1 = −2CA Bn ·

(
Re e−iωnzneiqn·b̂In−1

)
.

In obeys a recursion relation from which the inclusive radiation probability
is found to obey the soluble recursion relation

Pn(k) = CA(Pn−1(k − qn) − Pn−1(k)) − 2CA Bn ·
(
Re e−iωnzneiqn·b̂In−1

)
+δn,1CACR|B1|2,

where b̂ = i∇k is the transverse momentum shift operator. The initial condi-
tion for this recursion relation is the initial hard vertex radiation amplitude
without final-state interactions that is given by P0 = CR H2 = CR/k2

⊥.
The complete solution to the problem can therefore be expressed in closed

form as

Pn(k) = −2CRC
n
A Re

n∑
i=1

⎧⎨⎩
n∏

j=i+1

(eiqj ·b̂ − 1)

⎫⎬⎭⊗Bi · eiqi·b̂e−iω0zi×
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i−1∏
m=1

(ei(ω0−ωm)zmeiqm·b̂ − 1)

}
⊗H(eiω0z1 − eiω0z0).

This expression can be averaged over any spatial distribution of interaction
centers, zi as well as any zi dependent momentum transfers qn. This form
is thus ideally suitable for Monte Carlo implementation for arbitrary qi, zi

medium ensemble averages.

4.2 Non-Abelian Energy Loss at Finite Opacity

The first application [75] of our general solution to the energy loss problem
was to calculate numerically the total radiated energy loss as a function of jet
energy E, plasma depth L, and infrared screening scale μ. In the absence of a
medium, the gluon radiation associated with a spin 1

2 parton jet is distributed
as

x
dN (0)

dx dk2
⊥

=
CRαs

π

(
1 − x+

x2

2

)
1

k2
⊥

, (17)

where x = k+/E+ ≈ ω/E, and CR is the Casimir of the (spin 1/2) jet in
the dR dimensional color representation. The differential energy distribution
outside a cone defined by k2

⊥ > μ2 is given by

dI(0)

dx
=

2CRαs

π

(
1 − x+

x2

2

)
E log

|k⊥|max

μ
, (18)

where the upper kinematic limit is k2
⊥ max = min [4E2x2, 4E2x(1 − x)] .

The energy loss outside the cone in the vacuum is then given by

ΔE(0) =
4CRαs

3π
E log

E

μ
. (19)

While this overestimates the radiative energy loss in the vacuum (self-quench-
ing), it is important to note that ΔE(0)/E ∼ 50% is typically much larger
than the medium induced energy loss.

Averaging over the momentum transfer q1⊥ via the color Yukawa po-
tential leads to a very simple first-order opacity result for the x � 1 gluon
double differential distribution

x
dN (1)

dx dk2
⊥

= x
dN (0)

dx dk2
⊥

L

λg

∫ q2
max

0
d2q1⊥

μ2
eff

π(q2
1⊥ + μ2)2

2k⊥ · q1⊥(k − q1)2⊥L
2

16x2E2 + (k − q1)4⊥L2 , (20)

where the opacity factor L/λg = Nσ
(g)
el /A⊥ arises from the sum over the N

distinct targets. Note that the radiated gluon mean free path λg = (CA/CR)λ
appears rather than the jet mean free path. The upper kinematic bound on
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the momentum transfer q2max = s/4  3Eμ, (1/μ2
eff = 1/μ2 −1/(μ2 +q2max)).

For SPS and RHIC energies, this finite limit cannot be ignored as we show
below.

The second-order contribution in opacity involving the sum of 72 direct
and 2 × 86 virtual and results in [75]

P (2) ∝ CRC
2
AdR [ 2C1 · B1 (1 − cos(ω1Δz1))

+ 2C2 · B2 (cos(ω2Δz2) − cos(ω2(Δz1 +Δz2))

− 2C(12) · B2
(
cos(ω2Δz2) − cos(ω(12)Δz1 + ω2Δz2)

)
− 2C(12) · B2(12)

(
1 − cos(ω(12)Δz1)

) ]
, (21)

where with C(mn) and ω(mn) obtained from H and ω0 through the substitu-
tion k⊥ ⇒ k⊥ − q⊥m − q⊥n and Bm(nl) ≡ Cm − C(nl) [75].

Numerical results comparing the first three orders in opacity corrections
to the hard distribution Eq. (17) were presented in [75]. To illustrate the
result consider a quark jet in a medium with λg = 1 fm, a screening scale
μ = 0.5 GeV and αs = 0.3 . The total radiative energy loss could be expressed
as

ΔE(1) =
CRαs

N(E)
L2μ2

λg
log

E

μ
, (22)

with N(∞) = 4 log(E/μ)/ṽ if the kinematic bounds were ignored as in the
approximations of Ref. [77]. We found that finite kinematic constraints and
the form of the first-order result cause N(E) to deviate considerably from
the asymptotic value for all energies accessible in the RHIC range. Together
with the logarithmic dependence on energy, these kinematic effects suppress
greatly the energy loss at lower (SPS) energies as seen in Fig. 26. This is in
sharp contrast to the approximately energy independent result in BDMS-ZW
where the finite kinematic bounds were neglected because only the asymptotic
limits were considered. Another remarkable result demonstrated numerically
is that the second- and third-order contributions to the integrated energy loss
remains surprisingly small in the physical range of nuclear opacities L/λg ∼ 5.
The rapid convergence of the opacity expansion even for realistic opacities
results from the fact that the effective expansion parameter is actually the
product of the opacity and the gluon formation probability Lμ2/2xE. The
leading quadratic dependence of the energy loss on nuclear thickness discov-
ered in BDMS [77] therefore already emerges from the dominant first-order
term in the opacity expansion.

At SPS energies kinematic effects suppress greatly the energy loss relative
to BDMS. Our estimates provide a natural explanation for the absence of jet
quenching in Pb + Pb at 160 AGeV observed by WA98. At RHIC energies,
on the other hand, a significant nonlinear (in A) pattern of suppression of
high-p⊥ hadrons relative to scaled pp data is predicted.
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Fig. 26. The GLV radiated energy loss [75] of a quark jet with energy Ejet =
5, 50, 500 GeV (at SPS, RHIC, LHC) is plotted as a function of the opacity L/λg.
(λg = 1 fm, μ = 0.5 GeV). Solid curves show first order, while dashed curves show
results up to second order in opacity. The asymptotic energy loss (solid triangles)
of BDMS [77] is shown for comparison. The energy dependence of GLV suppressing
radiative energy loss of low energy jets explains why no jet quenching was observed
at the SPS (see Fig. 10)

4.3 The Opacity of the QGP at RHIC

As a second application of the GLV energy loss, in Ref. [89] we computed the
quenched pQCD distribution of high-pT hadrons as a function of the effective
static plasma opacity, L/λg. In Figs. 27 and 28, the jet energy dependence of
the GLV energy loss for gluons is shown. The most important feature to note
is that ΔEGLV /E is approximately constant in the energy range accessible
at RHIC.

In order to compute the pion spectrum, note that jet quenching reduces
the energy of the jet before fragmentation. We concentrate on mid-rapidity
(ycm = 0), where the jet transverse momentum before fragmentation is shifted
by the energy loss as in [112], p∗

c(L/λ) = pc − ΔE(E,L). This shifts the
zc parameter in the fragmentation function of the integrand (23) to z∗

c =
zc/(1 −ΔE/pc).

The invariant cross section of hadron production in central A+A collision
is then given by [91]

Eh
dσAA

h

d3p
=
∫

d2b d2r tA(b)tB(b − r)
∑
abcd

∫
dxadxbdzcd2k⊥,ad2k⊥,b ·
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Fig. 27. Non-Abelian energy loss of a gluon jet calculated in the GLV picture [75]

Fig. 28. The relative energy loss (ΔE/E) is approximately constant at medium
energy, 2 ≤ E ≤ 10 GeV

fa/A(xa, k⊥,a(b), Q2)fb/A(xb, k⊥,b(b − r), Q2)
dσ
dt̂

z∗
c

zc

Dh/c(z∗
c , Q̂

2)
πz2

c
ŝδ(ŝ+ t̂+ û) , (23)

where the upper limit of the impact parameter integral is bmax = 4.7 fm for
10 % central Au+Au collisions. Here tA(b) is the usual (Glauber) thickness
function. The factor z∗

c/zc appears because of the in-medium modification
of the fragmentation function [112]. Thus, the invariant cross section (23)
depends on the average opacity or collision number, n̄ = L/λg. The calculated
spectra for pions are displayed for n̄ = 0, 1, 2, 3, 4 in Fig. 29. Fig. 30 shows
their ratios to the non-quenched spectra at n̄ = 0. We note that in contrast to
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previous energy independent estimates for the energy loss, the GLV energy-
dependent energy loss leads to constant suppression of the high-pT domain in
agreement with the preliminary data. The peripheral collisions are consistent
with a rather small opacity in contrast to central collisions, as expected.

Fig. 29. Pion production in Au+Au collision including jet quenching with opacity
L/λ = 1, 2, 3, 4. Preliminary QM01 PHENIX data shown (see updated data from
[85] in Fig.13)

The ratio of central to peripheral PHENIX [85] data from QM01 shown in
Fig. 30 clearly reveals that jet quenching at RHIC overcomes the Cronin
enhancement at zero (final state) opacity. This is in stark contrast to data at
SPS energies, where WA98 found no evidence for quenching in Pb + Pb at
160 AGeV but a factor of two Cronin enhancement as discussed before.

Figs. 29 and 30 indicate that an effective static plasma opacity L/λ = 3−4
is sufficient to reproduce the preliminary jet quenching pattern observed at
RHIC. In Ref. [83] it was shown that a rather small constant dE/dx ≈ 0.25
GeV/fm was also found to be consistent with the data. However, it is impor-
tant to emphasize that these effective static plasma opacities and parameters
hide the underlying rapid dilution of the plasma due to expansion. The GLV
formalism including the kinematic constraints at first order has been further
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where ρ(z) is the plasma density at time z along the jet path at position
z from the production point and where the screening scale μ(z) may also
depend on time.

Consider a density evolution of the form as in [77],

ρ(z) = ρ0

(z0
z

)α

θ(L− z) , (25)

where α = 0 corresponds to a static uniform medium of thickness L, while α =
1 to Bjorken 1+1D longitudinal expansion transverse to the jet propagation
axis.

Analytic expressions can only be obtained again for asymptotic jet ener-
gies when the kinematic boundaries can be ignored. In that case, all but the
path integral can be done giving

ΔE ≈ CRαs

2

∫ ∞

z0

dz
μ2(z)
λ(z)

(z − z0) log
2E

Lμ2(z)
, (26)

which is a linear weighed line integral over the local transport coefficient
[77] (μ2(z)/λ(z)) ≈ 9

2πα
2
sρ(z), however, enhanced by a log 2E/Lμ2(z) factor

that results from the structure of the GLV integral missing in the BDMS
asymptotic limit. For an expanding plasma as in (25)

ΔEα(L, z0) ≈ CRαs

2
μ2(L)Lα

λ(L)
L2−α

2 − α
ṽ . (27)

Here ṽ = log 2E/Lμ2(L) and we used that μ2(L)Lα/λ(L) is a constant in-
dependent of L for this type of expansion. We also took the z0 → 0 limit.
We therefore recover the asymptotic BDMSZ energy loss for both static and
expanding media modulated by a logE/ω(L) factor that is important at
RHIC energies. Using the Bjorken relation between the gluon density and
the rapidity density then gives

ΔEα=1(L) =
9CRπα

3
s

4

(
1

πR2

dNg

dy

)
L log

2E
Lμ2(L)

. (28)

In practice, it is straight forward to integrate GLV numerically including the
finite kinematic constraints.

For non-central collisions the GLV line integral depends, of course, on the
azimuthal direction φ of the jet. The variation of the azimuthal energy loss
with respect to φ at a given impact parameter b can be expressed in terms of

R(b, φ) =
ΔE(b, φ)
ΔE(0)

with results shown in Fig. 31 The effect of this azimuthal variation of the
energy loss is to induce an apparent elliptic flow at high pT not related to hy-
drodynamic phenomena of low pT . In [21] we proposed a simple interpolation
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between the hydrodynamic and jet quenched pT eikonal regimes

v2(pT) ≈ v2s(pT)dNs + v2h(pT)dNh

dNs + dNh
. (29)

This interpolates between the hydrodynamic and the pQCD regimes because
at high pT, dNh � dNs. For our numerical estimates the low-pT interpolation
is achieved by turning off the pQCD curves with a switch function fh(pT) =
0.5[1 + tanh(3(pT − 1.5 GeV))].
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Fig. 31. The modulation function R(b, φ) is plotted vs. φ for impact parameters
b = 2, 6, 10 fm. Diffuse Woods-Saxon and uniform sharp cylinder geometries are
compared. The most drastic difference between these geometries occurs at high
impact parameters

We see in Fig. 32 that the magnitude and shape of the high-pT elliptic flow
provides a complementary probe of the initial gluon density and is also sensi-
tive to the geometrical distribution of the plasma. The saturated v2 increases
systematically with increasing initial plasma density and thus provides an
important complementary constraint on the maximum initial parton density
produced in central b = 0 collisions. The consistency of the quenched elliptic
flow in non-central with the central quench pattern will be very important
to test when the final data become available.

5 Summary

If confirmed by further measurements and theoretical refinements, jet quench-
ing may have already provided the first evidence that initial parton densities
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Fig. 32. The interpolation of v2(pT) between the soft hydrodynamic [58] and hard
pQCD regimes [21] is shown for different gluon rapidity densities in central b = 0
collisions. The gluon rapidity density at b �= 0 is assumed to scale with the binary
collision number. Solid (dashed) curves correspond to sharp cylindrical (diffuse
Woods-Saxon) geometry

on the order of 100 times nuclear matter density may have been produced
at RHIC. The full analysis of flavor composition, shape, and azimuthal mo-
ments of the high-pT spectra appears to be a promising diagnostic probe of
the evolution of the gluon plasma produced at RHIC. However, it is too early
to tell what the preliminary say about the properties of that extremely dense
form of matter. There are too many pieces of the puzzle that simply do not
fit well into any scenario. The beam energy and centrality independence of
the transverse energy per charged particle is one of them. The anomalous
baryon number transport to high transverse momenta and central rapidities
is another. Finally, the puzzling beam energy independence of the prelim-
inary pion interferometry results is a mystery. As the tera-bytes of RHIC
data continue to stream in during the next few years, they will certainly pose
many interesting new QCD many-body problems. The new chapter on the
physics of ultra-dense matter and the dynamics of ultra-relativistic nuclei is
now unfolding at RHIC.
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Dense Quark Matter in Compact Stars
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1 Introduction

QCD is firmly established as the theory underlying all of strong-interaction
physics, and a pillar of the standard model. Perturbative QCD has been ver-
ified in deep inelastic scattering, and the spectrum and structural properties
of the hadrons are gradually being calculated by the nonperturbative lattice
formulation of QCD.

Even so, there remain tantalizing questions. As well as predicting the be-
haviour of small numbers of particles, QCD should also be able to tell us
about the thermodynamics of matter in the realm of extraordinarily high
temperatures (� 100 MeV) and densities at which it comes to dominate the
physics. These regions are of more than academic interest: neutron stars are
believed to consist of matter squeezed beyond nuclear density by gravitational
forces, and the whole universe was hotter than 100 MeV for the first crucial
microseconds of its history. However, only in the last few years have these
regions begun to be probed experimentally in heavy-ion collisions and astro-
physical observations of neutron stars, and our theoretical understanding of
them remains elementary.

High densities have proven particularly difficult to study, in part because
lattice gauge theory has been blocked by the complexity of the fermion deter-
minant. We are still trying to establish the symmetries of the ground state,
and find effective theories for its lowest excitations. These questions are of
direct physical relevance: an understanding of the symmetry properties of
dense matter can be expected to inform our understanding of neutron star
astrophysics and perhaps also heavy-ion collisions which achieve high baryon
densities without reaching very high temperatures.

In this article I will review the progress that has been made in the last
few years in understanding the possible phases of QCD at low temperatures
and high densities, and go on to discuss the possible observable signatures
in compact-stars phenomenology. Other reviews, with different explanations
and emphasis, will also prove useful to the reader [1].

1.1 The Fermi Surface and Cooper Instability

One of the most striking features of QCD is asymptotic freedom: the force
between quarks becomes arbitrarily weak as the characteristic momentum
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scale of their interaction grows larger. This immediately suggests that at
sufficiently high densities and low temperatures matter will consist of a Fermi
sea of essentially free quarks, whose behavior is dominated by the freest of
them all: the high-momentum quarks that live at the Fermi surface.

Actually, things are quite different. It was shown by Bardeen, Cooper,
and Schrieffer (BCS) [2] that in the presence of attractive interactions a
Fermi surface is unstable. If there is any channel in which the quark-quark
interaction is attractive, then there is a state of lower free energy that consists
of a complicated coherent superposition of particle and hole pairs – “Cooper
pairs”.

This can be seen intuitively as follows. Consider a system of free particles.
The Helmholtz free energy is F = E − μN , where E is the total energy of
the system, μ is the chemical potential, and N is the number of particles.
The Fermi surface is defined by a Fermi energy EF = μ, at which the free
energy is minimized, so adding or subtracting a single particle costs zero
free energy. Now, suppose a weak attractive interaction is switched on. BCS
showed that this favors a complete rearrangement of the states near the
Fermi surface, because it costs no free energy to make a pair of particles
(or holes), and the attractive interaction makes it favorable to do so. Many
such pairs will therefore be created, in all the modes near the Fermi surface,
and these pairs, being bosonic, will form a condensate. The ground state will
be a superposition of states with all numbers of pairs, breaking the fermion
number symmetry. An arbitrarily weak interaction has lead to spontaneous
symmetry breaking.

In condensed-matter systems, where the relevant fermions are electrons,
the necessary attractive interaction has been hard to find. The dominant
interaction between electrons is the repulsive electrostatic force, but in the
right kind of crystal there are attractive phonon-mediated interactions that
can overcome it. In these materials the BCS mechanism leads to supercon-
ductivity, since it causes Cooper pairing of electrons, which breaks the elec-
tromagnetic gauge symmetry, giving mass to the photon and producing the
Meissner effect (exclusion of magnetic fields from a superconducting region).
The Cooper-paired state is rare and delicate, easily disrupted by thermal
fluctuations, so superconductivity only survives at low temperatures.

In QCD, by contrast, the dominant gauge-boson-mediated interaction be-
tween quarks is itself attractive [3,4,5,6,7]. The relevant degrees of freedom
are those which involve quarks with momenta near the Fermi surface. These
interact via gluons, in a manner described by QCD. The quark-quark interac-
tion has two color channels available, the antisymmetric 3̄, and the symmetric
6. It is attractive in the 3̄A: this can be seen in single-gluon exchange or by
counting of strings.

Since pairs of quarks cannot be color singlets, the resulting condensate
will break the local color symmetry SU(3)color. We call this “color supercon-
ductivity”. Note that the quark pairs play the same role here as the Higgs
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particle does in the standard model: the color-superconducting phase can be
thought of as the Higgsed (as opposed to confined) phase of QCD.

It is important to remember that the breaking of a gauge symmetry can-
not be characterized by a gauge-invariant local order parameter which van-
ishes on one side of a phase boundary. The superconducting phase can be
characterized rigorously only by its global symmetries. In electromagnetism
there is a non-local order parameter, the mass of the magnetic photons, that
corresponds physically to the Meissner effect and distinguishes the free phase
from the superconducting one. In QCD there is no free phase: even without
pairing the gluons are not states in the spectrum. No order parameter dis-
tinguishes the Higgsed phase from a confined phase or a plasma, so we have
to look at the global symmetries.

In most of this article we will take an approach similar to that used in
analyzing the symmetry breaking of the standard model, and discuss the
phases of dense QCD in terms of a gauge-variant observable, the diquark
condensate, which is analogous to the vacuum expectation value (VEV) of
the Higgs field. However, this is only a convenience, and we will be careful to
label different phases by their unbroken global symmetries, so that they can
always be distinguished by gauge-invariant order parameters.

1.2 The Gap Equation

To decide whether or not fermions condense in the ground state, one can
explicitly construct a wave functional with the appropriate pairing, and use
a many-body variational approach. But the field-theoretical approach, though
less concrete, is more general, and I will briefly describe it here.

The important quantity is the quark self-energy, i.e. the one-particle irre-
ducible (1PI) Green function of two quark fields. Its poles will give the gauge-
invariant masses of the quasiquarks, the lowest energy fermionic excitations
around the quark Fermi surface. To see if condensation (chiral condensation,
flavor-singlet quark pairing, or whatever) occurs in some channel, one writes
down a self-consistency equation, the gap equation, for a self-energy with that
structure, and solves it to find the actual self-energy (the gap). If it is zero,
there is no condensation in that channel. If not, there can be condensation,
but it may just be a local minimum of the free energy. There may be other
solutions to the gap equation, and the one with the lowest free energy is the
true ground state.

There are several possible choices for the interaction to be used in the gap
equation. At asymptotically high densities QCD is weakly coupled, so one-
gluon exchange is appropriate. Such calculations [8,9,10,11,12,13,14,15,16,17]
are extremely important, since they demonstrate from first principles that
color superconductivity occurs in QCD. However, the density regime of phys-
ical interest for neutron stars or heavy-ion collisions is up to a few times
nuclear density (μ � 500 MeV) and weak-coupling calculations are unlikely
to be trustworthy in that regime. In fact, current weak-coupling calculations
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Fig. 1. Mean-field Schwinger-Dyson (gap) equations

cannot be extrapolated below about 108 MeV because of gauge dependence
arising from the neglect of vertex corrections [18]. There have also been some
preliminary investigations of confinement-related physics such as a gluon con-
densate [87,88].

The alternative is to use some phenomenological interaction that can be
argued to capture the essential physics of QCD in the regime of interest. The
interaction can be normalized, to reproduce known low-density physics such
as the chiral condensate, and then extrapolated to the desired chemical poten-
tial. In two-flavor theories, the instanton vertex is a natural choice [6,7,19,20],
since it is a four-fermion interaction. With more flavors, the one-gluon ex-
change vertex without a gluon propagator [5,21,22] is more convenient. It
has been found that these both give the same results, to within a factor of
about 2. This is well within the inherent uncertainties of such phenomeno-
logical approaches. In the rest of this article we will therefore not always be
specific about the exact interaction used to obtain a given result. One caveat
to bear in mind is that the single-gluon exchange interaction is symmetric
under U(1)A, and so it sees no distinction between condensates of the form
〈qCq〉 and 〈qCγ5q〉 (C is the Dirac charge-conjugation matrix). However,
once instantons are included the Lorentz scalar 〈qCγ5q〉 is favored [6,7], so in
single-gluon exchange calculations the parity-violating condensate is usually
ignored.

The mean-field approximation to the Schwinger-Dyson equations is shown
diagramatically in Fig. 1, relating the full propagator to the self-energy. In
the mean-field approximation, only daisy-type diagrams are included in the
resummation, vertex corrections are excluded. Algebraically, the equation
takes the form

Σ(k) = − 1
(2π)4

∫
d4qM−1(q)D(k − q), (1)

where Σ(k) is the self-energy, M is the full fermion matrix (inverse full prop-
agator), and D(k−q) is the vertex, which in NJL models will be momentum-
independent, but in a weak-coupling QCD calculation will include the gluon
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propagator and couplings. Since we want to study quark-quark condensa-
tion, we have to write propagators in a form that allows for this possibility,
just as to study chiral symmetry breaking it is necessary to use 4-component
Dirac spinors rather than 2-component Weyl spinors, even if there is no mass
term in the action. We therefore use Nambu-Gorkov 8-component spinors,
Ψ = (ψ, ψ̄T ), so the self-energy Σ can include a quark-quark pairing term Δ.
The fermion matrix M then takes the form

M(q) = Mfree +Σ =
(
q/+ μγ0 γ0Δγ0
Δ (q/− μγ0)T

)
. (2)

Equations (1) and (2) can be combined to give a self-consistency condition
for Δ, the gap equation. If the interaction is a point-like four-fermion NJL
interaction then the gap parameter Δ will be a color-flavor-spin matrix,
independent of momentum. If the gluon propagator is included, Δ will be
momentum-dependent, complicating the analysis considerably.

In NJL models, the simplicity of the model has allowed renormalization-
group analyses [23,24] that include a large class of four-fermion interactions,
and follow their running couplings as modes are integrated out. This confirms
that in QCD with two and three massless quarks the most attractive channels
for condensation are those corresponding to the two-flavor superconducting
(2SC) and color-flavor locked (CFL) phases studied below. Calculations us-
ing random matrices, which represent very generic systems, also show that
diquark condensation is favored at high density [25].

Following through the analysis outlined above, one typically finds gap
equations of the form

1 = K

∫ Λ

0
k2dk

1√
(k − μ)2 +Δ2

, (3)

where K is the NJL four-fermion coupling. In the limit of small gap, the
integral can be evaluated, giving

Δ ∼ Λ exp
(const
Kμ2

)
. (4)

This shows the non-analytic dependence of the gap on the coupling K. Con-
densation is a nonperturbative effect that cannot be seen to any order in per-
turbation theory. The reason it can be seen in the diagrammatic Schwinger-
Dyson approach is that there is an additional ingredient: an ansatz for the
form of the self-energy. This corresponds to guessing the form of the ground-
state wave function in a many-body variational approach. All solutions to
gap equations therefore represent possible stable ground states, but to find
the favored ground state their free energies must be compared, and even then
one can never be sure that the true ground state has been found, since there
is always the possibility that there is another vacuum that solves its own gap
equation and has an even lower free energy.
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In weak-coupling QCD calculations, where the full single-gluon exchange
vertex complete with gluon propagator is used, the gap equation takes the
form [3,4,8,12]

Δ ∼ μ
1
g5 exp

(
−3π2

√
2

1
g

)
, (5)

or, making the weak-coupling expansion in the QCD gauge coupling g more
explicit,

ln
(Δ
μ

)
= −3π2

√
2

1
g

− 5 ln g + const + O(g). (6)

This gap equation has two interesting features. Firstly, it does not corre-
spond to what you would naively expect from the NJL model of single-gluon
exchange, in which the gluon propagator is discarded and K ∝ g2, yielding
Δ ∼ exp(−1/g2). The reason [4,8] is that at high density the gluon propaga-
tor has an infrared divergence at very small angle scattering, since magnetic
gluons are only Landau damped, not screened. This divergence is regulated
by the gap itself, weakening its dependence on the coupling.

Secondly, in (5) we have left unspecified the energy scale at which the cou-
pling g is to be evaluated. Natural guesses would be μ or Δ. If we use g(μ) and
assume it runs according to the one-loop formula 1/g2 ∼ lnμ then the expo-
nential factor in (5) gives very weak suppression, and is in fact overwhelmed
by the initial factor μ, so that the gap rises without limit at asymptotically
high density, althoughΔ/μ shrinks to zero so that weak-coupling methods are
still self-consistent. This means that color superconductivity will inevitably
dominate the physics at high enough densities.

2 Two Massless Quark Flavors

In the real world there are two light quark flavors, the up (u) and down (d),
with masses � 10 MeV, and a medium-weight flavor, the strange (s) quark,
with mass ∼ 100 MeV. A first approximation is to ignore the strange, and
set mu,d = 0.

The gap equation for this scenario has been solved using various inter-
actions: pointlike four-fermion interactions based on the instanton vertex
[3,6,7,19], a full instanton vertex including all the form factors [20], and a
weakly coupled gluon propagator [9,12,10,13,14,15]. All agree that the quarks
will pair in the color 3̄ flavor singlet channel, a pattern that we call the two-
flavor superconducting (2SC) phase,

2SC phase: Δαβ
ij = 〈qα

i q
β
j 〉1PI ∝ Cγ5εijε

αβ3 (7)

(color indices α, β run from 1 to 3, flavor indices i, j run from 1 to 2,
Dirac indices are suppressed, and C is the Dirac charge-conjugation matrix).
The four-fermion interaction calculations also agree on the magnitude of Δ:
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Fig. 2. Two massless flavor phase diagram

around 100 MeV. This is found to be roughly independent of the cutoff, al-
though the chemical potential at which it is attained is not. Such calculations
are based on calibrating the coupling to give a chiral condensate of around
400 MeV at zero density, and turning μ up to look for the maximum gap.

As with any spontaneous symmetry breaking, one of the degenerate
ground states is arbitrarily selected. In this case, quarks of the first two colors
(red and green) participate in pairing, while the third color (blue) does not.
The ground state is invariant under an SU(2) subgroup of the color rotations
that mixes red and green, but the blue quarks are singled out as different.
The pattern of symmetry breaking is therefore (with gauge symmetries in
square brackets)

[SU(3)color] × [U(1)Q] × SU(2)L × SU(2)R

−→ [SU(2)color] × [U(1)Q̃] × SU(2)L × SU(2)R
(8)

The expected phase diagram in the μ-T plane is shown in Fig. 2. The features
of this pattern of condensation are

• The color gauge group is broken down to SU(2), so five of the gluons
will become massive, with masses of order the gap (since the coupling is
of order 1). The remaining three gluons are associated with an unbroken
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SU(2) red-green gauge symmetry, whose confinement distance scale rises
exponentially with density [26].

• The red and green quark modes acquire a gap Δ, which is the mass of
the physical excitations around the Fermi surface (quasiquarks). There is
no gap for the blue quarks in this ansatz, and it is an interesting question
whether they find some other channel in which to pair. The available
attractive channels appear to be weak so the gap will be much smaller,
perhaps in the keV range [6,27]. It has even been suggested that ’tHooft
anomaly matching may prevent any condensation [28,29].

• Electromagnetism is broken, but this does not mean that the 2SC phase
is an electromagnetic as well as a color superconductor. Just as in the
standard model the Higgs VEV leaves unbroken a linear combination Q
of the weak W3 and hypercharge Y bosons, so here a linear combination
Q̃ of the eighth gluon T8 and the electric charge Q is left unbroken. This
plays the role of a “rotated” electromagnetism. We will discuss some of
its physical effects in a later section.

• No global symmetries are broken (although additional condensates that
break chirality have been suggested [30]) so the 2SC phase has the same
symmetries as the quark-gluon plasma (QGP), so there need not be any
phase transition between them. Again, this is in close analogy to the
physics of the standard model, where the Higgs VEV breaks no global
symmetries: the phase transition line between the unbroken and broken
phases ends at some critical Higgs mass, and the two regimes are ana-
lytically connected. The reader may wonder why one cannot construct
an order parameter to distinguish the 2SC phase using the fact that the
quark pair condensate blatantly breaks baryon number, which is a global
symmetry. However, in the two-flavor case baryon number is a linear com-
bination of electric charge and isospin, B = 2Q− 2I3, so baryon number
is already included in the symmetry groups of (8). Just as an admixture
of gluon and photon survives unbroken as a rotated electromagnetism, so
an admixture of B and T8 survives unbroken as a rotated baryon number.

3 Three Massless Quark Flavors

In QCD with three flavors of massless quarks the Cooper pairs cannot be
flavor singlets, and both color and flavor symmetries are necessarily broken
[22] (see also [31] for zero density). The gap equation has been solved for
pointlike 4-fermion interactions with the index structure of single-gluon ex-
change [22,32,33] as well as a weakly coupled gluon propagator [16,17]. They
agree that the attractive channel exhibits a pattern called color-flavor locking
(CFL),

CFL phase: Δαβ
ij = 〈qα

i q
β
j 〉1PI ∝ Cγ5[εαβXεijX + κ(δα

i δ
β
j + δα

j δ
β
i )]

∝ Cγ5[(κ+ 1)δα
i δ

β
j + (κ− 1)δα

j δ
β
i ]

(9)
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(color indices α, β and flavor indices i, j all run from 1 to 3). The first line
shows the connection between this and the 2SC pairing pattern. When κ = 0,
the pairing is in the (3̄A, 3̄A) channel of color and flavor, which corresponds
to three orthogonal copies of the 2SC pairing: the red and green u and d
pair as in 2SC, in addition the red and blue u and s pair, and finally the
green and blue d and s pair. The term multiplied by κ corresponds to pairing
in the (6S ,6S). It turns out that this additional condensate, although not
highly favored energetically (the color 6S is not attractive in single-gluon
exchange, instanton vertex, or strong coupling) breaks no additional sym-
metries and so κ is in general small but not zero [22,34]. A weak-coupling
calculation [16] shows that κ is suppressed by one power of the coupling,
κ = g

√
2 log(2)/(36π).

The second line of (9) exhibits the color-flavor locking property of this
ground state. The Kronecker deltas dot color indices with flavor indices, so
that the VEV is not invariant under color rotations, nor under flavor ro-
tations, but only under simultaneous, equal and opposite, color and flavor
rotations. Since color is only a vector symmetry, this VEV is only invariant
under vector flavor rotations, and breaks chiral symmetry.

The pattern of symmetry breaking is therefore

[SU(3)color] × SU(3)L × SU(3)R︸ ︷︷ ︸
⊃ [U(1)Q]

×U(1)B −→ SU(3)C+L+R︸ ︷︷ ︸
⊃ [U(1)Q̃]

×Z2. (10)

The expected phase diagram in the μ-T plane is shown in Fig. 3. The features
of this pattern of condensation are:

• The color gauge group is completely broken. All eight gluons become
massive. This ensures that there are no infrared divergences associated
with gluon propagators.

• All the quark modes are gapped. The nine quasiquarks (three colors times
three flavors) fall into an 8 ⊕ 1 of the unbroken global SU(3), so there
are two gap parameters. The singlet has a larger gap than the octet.

• Electromagnetism is no longer a separate symmetry, but corresponds to
gauging one of the flavor generators. A rotated electromagnetism (“Q̃”)
survives unbroken. Just as in the 2SC case it is a combination of the
original photon and one of the gluons, although the relative coefficients
are different.

• Two global symmetries are broken, the chiral symmetry and baryon
number, so there are two gauge-invariant order parameters that distin-
guish the CFL phase from the QGP, and corresponding Goldstone bosons
which are long-wavelength disturbances of the order parameter. The or-
der parameter for the chiral symmetry is 〈ψ̄Lγμλ

AψLψ̄Rγμλ
AψR〉 where

λA are the flavor generators [16] (which only gets a vacuum expecta-
tion value beyond the mean-field approximation). The chiral Goldstone
bosons form a pseudoscalar octet, like the zero-density SU(3)flavor pion
octet. The breaking of the baryon number symmetry has order parameter
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〈udsuds〉 = 〈ΛΛ〉, and a singlet scalar Goldstone boson which makes the
CFL phase a superfluid.
If a quark mass were introduced, then it would explicitly break the chiral
symmetry and give a mass to the chiral Goldstone octet, but the CFL
phase would still be a superfluid, distinguished by its baryon number
breaking.

• Quark-hadron continuity. It is striking that the symmetries of the 3-
flavor CFL phase are the same as those one might expect for 3-flavor
hypernuclear matter [32]. In hypernuclear matter one would expect the
hyperons to pair in an SU(3)flavor singlet (〈ΛΛ〉, 〈ΣΣ〉, 〈NΞ〉), breaking
baryon number but leaving flavor and electromagnetism unbroken. Chiral
symmetry would be broken by the chiral condensate. This means that one
might be able to follow the spectrum continuously from hypernuclear
matter to the CFL phase of quark matter – there need be no phase
transition. The pions would evolve into the pseudoscalar octet mentioned
above. The vector mesons would evolve into the massive gauge bosons.
This will be discussed in more detail below for the 2+1 flavor case.

q
L
q
R hyper−

nuclear
matter q qR R

q
L
q
L

superconducting

L R

150
MeV

color

potential
chemical
Quark

deconfined

confined

U(1)
V

SU(3)

SU(3)
V

Temperature

U(1)SU(3) SU(3)

Restoration of global symmetry

SU(3)

SU(3) U(1)

U(1)

A

B

A

Fig. 3. Three massless flavor phase diagram
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Table 1. Symmetries of phases of QCD

phase electromagnetism chiral symmetry baryon number
QGP Q unbroken B

2 flavor
nuclear matter broken broken broken

2 flavor quark
pairing (2SC) Q̃ = Q − 1

2
√

3
T8 unbroken B̃ = Q̃ + I3

3 flavor
nuclear matter Q broken broken

3 flavor quark
pairing (CFL) Q̃ = Q + 1√

3
T8 broken broken

We can now draw a hypothetical phase diagram for 3-flavor QCD (Fig. 3).
Comparing with the 2-flavor case, we see that the 2SC quark-paired phase is
easy to distinguish from nuclear matter, since it has restored chiral symmetry,
but hard to distinguish from the QGP. The CFL phase is easy to distinguish
from the QGP, but hard to distinguish from hypernuclear matter.

We conclude that dense quark matter has rather different global symme-
tries for ms = 0 than for ms = ∞. Since the real world has a strange quark of
middling mass, it is very interesting to see what happens as one interpolates
between these extremes.

4 Two Massless + One Massive Quark Flavors

A nonzero strange quark mass explicitly breaks the flavor SU(3)L × SU(3)R

symmetry down to SU(2)L × SU(2)R. If the strange quark is heavy enough
then it will decouple, and 2SC pairing will occur. For a sufficiently small
strange quark mass we expect a reduced form of color-flavor locking in which
an SU(2) subgroup of SU(3)color locks to isospin, causing chiral symmetry
breaking and leaving a global SU(2)color+V group unbroken.

As ms is increased from zero to infinity, there has to be some critical value
at which the strange quark decouples, color and flavor rotations are unlocked,
and the full SU(2)L × SU(2)R symmetry is restored. It can be argued on
general grounds (see below) that a simple unlocking phase transition must
be first order, although there are strong indications that there is a crystalline
intermediate phase (see Sect. 5).

An analysis of the unlocking transition, using a NJL model with inter-
action based on single-gluon exchange [35,32] confirms this expectation. Al-
though the quantitative results from NJL models can only be regarded as
rough approximations, it is interesting that the calculations indicate that for
realistic values of the strange quark mass chiral symmetry breaking may be
present for densities all the way down to those characteristic of baryonic mat-
ter. This raises the possibility that quark matter and baryonic matter may
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be continuously connected in nature, as Schäfer and Wilczek have conjec-
tured for QCD with three massless quarks [32]. The gaps due to pairing at
the quark Fermi surfaces map onto gaps due to pairing at the baryon Fermi
surfaces in superfluid baryonic matter consisting of nucleons, Λ’s, Σ’s, and
Ξ’s (see below).

Based on the NJL calculations, the zero-temperature phase diagram as
a function of chemical potential and strange quark mass has been conjec-
tured [35] to be as shown in Fig. 4. Electromagnetism was ignored in this
calculation, and it was assumed that wherever a baryon Fermi surface is
present, baryons always pair at zero temperature. To simplify our analysis,
we assume that baryons always pair in channels which preserve rotational
invariance, breaking internal symmetries such as isospin if necessary. So the
real phase diagram may well be even more complicated.

μ
V

μo

ms

μ

ms
cont

2SC +s
SU(2) SU(2)

L R

CFL

SU(2)
+CV

2SC
nuclear

SU(2)
U(1)

vacuum

U(1)S

SU(2) SU(2)
RL

V
U(1)

S

S

strange
hadronic

Fig. 4. Conjectured phase diagram for 2+1 flavor QCD at T = 0. The global sym-
metries of each phase are labelled. The solid line marks chiral symmetry breaking,
the dashed line isospin breaking, and the dotted line strangeness breaking. The
regions of the phase diagram labelled 2SC, 2SC+s and CFL denote color super-
conducting quark matter phases. The shading marks the region of quark-hadron
continuity. A detailed explanation is given in the text

We characterize the phases using the SU(2)L ×SU(2)R flavor rotations of
the light quarks, and the U(1)S rotations of the strange quarks. The U(1)B

symmetry associated with baryon number is a combination of U(1)S , a U(1)
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subgroup of isospin, and the gauged U(1)EM of electromagnetism. Therefore,
in our analysis of the global symmetries, once we have analyzed isospin and
strangeness, considering baryon number adds nothing new.

4.1 Description of the Phase Diagram

To explain Fig. 4, we follow the phases that occur from low to high density,
first for large ms, then small ms.

Heavy Strange Quark. For μ = 0 the density is zero; isospin and strange-
ness are unbroken; Lorentz symmetry is unbroken; chiral symmetry is bro-
ken. Above a first-order transition [36] at an onset chemical potential μo ∼
300 MeV, one finds nuclear matter. Lorentz symmetry is broken, leaving
only rotational symmetry manifest. Chiral symmetry is broken, though per-
haps with a reduced chiral condensate. We expect an instability of the nu-
cleon Fermi surfaces to lead to Cooper pairing, and assume that, as is ob-
served in nuclei, the pairing is pp and nn, breaking isospin (and perhaps also
rotational invariance). Since there are no strange baryons present, U(1)S

is unbroken. When μ is increased above μV, we find the “2SC” phase of
color-superconducting matter consisting of up and down quarks only, paired
in Lorentz singlet isosinglet channels. The full flavor symmetry SU(2)L ×
SU(2)R is restored. The phase transition at μV is first order according to
NJL models with low cutoff [19,37,38,20] and random matrix models [39] as
the chiral condensate competes with the superconducting condensate.

When μ exceeds the constituent strange quark mass Ms(μ), a strange
quark Fermi surface forms, with a Fermi momentum far below that for the
light quarks. The strange quarks pair with each other, in a color-spin locked
phase [40] that we call “2SC+s”. Strangeness is now broken, but the ss
condensate is expected to be small [40].

Finally, when the chemical potential is high enough that the Fermi mo-
menta for the strange and light quarks become comparable, we cross into
the color-flavor locked (CFL) phase. There is an unbroken global symmetry
constructed by locking the SU(2)V isospin rotations and an SU(2) subgroup
of color. Chiral symmetry is once again broken.

Light Strange Quark. Below μo, we have the vacuum, as before. At μo,
one enters the nuclear matter phase, with the familiar nn and pp pairing at
the neutron and proton Fermi surfaces breaking isospin.

At a somewhat larger chemical potential, strangeness is broken, first per-
haps by kaon condensation [41,42,43] or by the appearance and Cooper pair-
ing of strange baryons, Λ and Σ, and then Ξ, which pair with themselves in
spin singlets. This phase is labelled “strange hadronic” in Fig. 4. The global
symmetries SU(2)L × SU(2)R and U(1)S are all broken.
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We can imagine two possibilities for what happens next as μ increases
further, and we enter the shaded region of the figure. (1) Deconfinement:
the baryonic Fermi surface is replaced by u, d, s quark Fermi surfaces, which
are unstable against pairing, and we enter the CFL phase, described above.
Isospin is locked to color and SU(2)color+V is restored, but chiral symmetry
remains broken. (2) No deconfinement: the Fermi momenta of all of the octet
baryons are now similar enough that pairing between baryons with differing
strangeness becomes possible. At this point, isospin is restored: the baryons
pair in rotationally invariant isosinglets (pΞ−, nΞ0, Σ+Σ−, Σ0Σ0, ΛΛ). The
interesting point is that scenario (1) and scenario (2) are indistinguishable.
Both look like the “CFL” phase of the figure: U(1)S and chirality are broken,
and there is an unbroken vector SU(2). This is the “continuity of quark and
hadron matter” described by Schäfer and Wilczek [32]. We conclude that for
low enough strange quark mass, ms < mcont

s , there may be a region where
sufficiently dense baryonic matter has the same symmetries as quark matter,
and there need not be any phase transition between them.

Color-flavor locking will always occur for sufficiently large chemical poten-
tial, for any nonzero, finite ms. This follows from Son’s model-independent
analysis valid at very high densities [8]. As a consequence of color-flavor lock-
ing, chiral symmetry is spontaneously broken even at asymptotically high
densities, in sharp contrast to the well-established restoration of chiral sym-
metry at high temperature.

Non-Zero Temperature. Finally, it is interesting to ask what we expect at
non-zero temperature. There has been no comprehensive NJL study of this,
but one can make the reasonable guess that quark pairing with a gap Δ at
T = 0 will disappear in a phase transition at Tc ≈ 0.6Δ. This is the BCS
result, which is also found to hold for quark pairing [12,11].

Assuming the zero-temperature phase structure given in Fig. 4, we can
guess that the non-zero temperature μ-T phase diagram for strange quark
masses varying from infinity to zero will be as shown in the diagrams of Fig. 5.
These are assembled into a single three-dimensional diagram in Fig. 6, where
for clarity only the chiral phase transition surface is shown: the thick line is
tricritical, and the shaded region that it bounds is second-order.

The main features of the phase diagram are as follows.
• The second-order chiral phase transition (dashed line) that is present at

low density and high temperature shrinks as the strange quark becomes
lighter, until at ms = m∗

s the tricritical point arrives at T = 0. At lower
masses, there is no second-order line.

• The strangeness-breaking line (dotted) and the high-density chiral sym-
metry breaking line (solid) do not exactly coincide because at low enough
temperature there is a window of densities where strange quarks are
present, but their Fermi momentum is too low to allow them to pair
with the light quarks. This is the 2SC+s phase, where the strange quarks
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μ

Fig. 6. The chiral phase transition surface as a function of chemical potential μ,
strange quark mass ms, and temperature T . The diagrams of Fig. 5 are a sequence
of μ-T sections through this space. The shaded region at high ms and T is the
second-order part of the critical surface, which is bounded by a tricritical (thick)
line. Everywhere else the phase transition is conjectured to be first order

pair with themselves, breaking strangeness/baryon number, in a color-
spin locked phase whose gap and critical temperature are very small [40].

• At arbitrarily high densities, where the QCD gauge coupling is small,
quark matter is always in the CFL phase with broken chiral symmetry.
This is true independent of whether the “transition” to quark matter is
continuous, or whether, as for larger ms, there are two first-order transi-
tions, from nuclear matter to the 2SC phase, and then to the CFL phase.

• Color-flavor locking survives for M2
s � 2

√
2μΔ (see below). Since the

CFL state is Q̃-neutral, there are no electrons present in this phase [44],
so introducing electromagnetism makes no difference to it.

Additional features, beyond those required by symmetry considerations alone,
have been suggested by Pisarski [45], by analogy with scalar-gauge field the-
ories.
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4.2 Quark-Hadron Continuity

The shaded region in Fig. 4 is characterized by a definite global symmetry,
SU(2)× [U(1)], but this can either be a hadronic (hyperonic) phase with un-
broken isospin and electromagnetism, or a color-flavor locked quark-matter
phase with an isospin+color symmetry and a rotated electromagnetism that
allows a linear combination of the photon and a gluon to remain massless. In
other words, in this regime there is no symmetry difference between hyper-
onic matter and quark matter. This raises the exciting possibility [32] that
properties of sufficiently dense hadronic matter could be found by extrapo-
lation from the quark matter regime where weak-coupling methods can be
used.

Table 2. Quark hadron continuity: mapping between states in high-density
hadronic and quark matter

Particle type Hyperonic matter ⇔ CFL quark matter

Fermions 8 Baryons ⇔ 9 Quarks

Chiral (pseudo)Goldstone 8 pion/kaons ⇔ 8 pseudoscalars
Baryon number
(pseudo)Goldstones 1 ⇔ 1

Vector Mesons 9 ⇔ 8 massive gluons

The most straightforward application of this idea is to relate the quark-
gluon description of the spectrum to the hadronic description of the spectrum
in the CFL phase [32]. The conjectured mapping is given in Table 2. Gluons
in the CFL phase map to the octet of vector bosons; the Goldstone bosons
associated with chiral symmetry breaking in the CFL phase map to the pions;
and the quarks map onto baryons. Pairing occurs at the Fermi surfaces, and
we therefore expect the gap parameters in the various quark channels to map
to the gap parameters due to baryon pairing.

In Table 3 we show how this works for the fermionic states in 2+1 flavor
QCD. There are nine states in the quark matter phase. We show how they
transform under the unbroken “isospin” of SU(2)color+V and their charges
under the unbroken “rotated electromagnetism” generated by Q̃, as described
in Sect. 6.5. Table 3 also shows the baryon octet, and their transformation
properties under the symmetries of isospin and electromagnetism that are
unbroken in sufficiently dense hadronic matter. Clearly there is a correspon-
dence between the two sets of particles (note that the final isosinglet has a
gap Δ+ twice as large as the others). As μ increases, the spectrum described
in Table 3 may evolve continuously even as the language used to describe it
changes from baryons, SU(2)V and Q to quarks, SU(2)color+V and Q̃.

If the spectrum changes continuously, then in particular so must the gaps.
As discussed above, the quarks pair into rotationally invariant, Q̃-neutral,
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Table 3. Mapping of fermionic states between high density quark and hadronic
matter

Quark SU(2)color+V Q̃ Hadron SU(2)V Q(
bu

bd

)
2

+1
(

p

n

)
2

+1
0 0(

gs

rs

)
2

0
(

Ξ0

Ξ−

)
2

0

−1 −1⎛
⎜⎝

ru − gd

gu

rd

⎞
⎟⎠ 3

0
⎛
⎜⎝

Σ0

Σ+

Σ−

⎞
⎟⎠ 3

0
+1 +1

−1 −1

ru + gd + ξ−bs 1 0 Λ 1 0
ru + gd − ξ+bs 1 0 —

SU(2)color+V singlets. The two doublets of Table 3 pair with each other, the
triplet pairs with itself. Finally, the two singlets pair with themselves.

5 Color-Flavor Unlocking
and the Crystalline Color Superconducting Phase

A prominent feature of the zero-temperature phase diagram in Fig. 4 is the
“unlocking” phase transition between two-flavor pairing (2SC) and three-
flavor pairing (CFL). At this phase transition, the Fermi momentum of free
strange quarks is sufficiently different from that of the light quarks to disrupt
pairing between them.

Such transitions are expected to be a generic feature of quark matter
in nature. In the absence of interactions, the requirements of weak equilib-
rium and charge neutrality cause all three flavors of quark to have different
Fermi momenta. In the extreme case where all three flavors had very differ-
ent chemical potentials, each flavor would have to self-pair [46,40], but in the
phenomenologically interesting density range we expect a rich and complex
phase structure for cold dense matter as a function of quark masses and den-
sity. The CFL ↔ 2SC transition of Fig. 4 is one example. Assuming that no
other intermediate phases are involved, we now give a model independent ar-
gument that the unlocking phase transition between the CFL and 2SC phases
in Fig. 4 must be first order. However, there is good reason to expect an in-
termediate state – the crystalline color-superconducting state, and we go on
to discuss it in some detail. Note that another crystalline phase, the “chiral
crsytal” has also been proposed [47], although it is not yet clear whether
there is any window of density where it is favored.
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Fig. 7. How the strange quark mass interferes with a u-s condensate. The strange
quark (upper curve) and light quark (straight line) dispersion relations are shown,
with their Fermi seas filled up to a common Fermi momentum pF . The horizontal
axis is the magnitude of the spatial momentum; s-wave pairing occurs between
particles (or holes) with the same p and opposite p. The energy gained by pairing
stops the s quarks from decaying to u quarks (see text)

5.1 The (Un)locking Transition

Figure 7 shows part of the CFL pairing pattern: the quark states of the differ-
ent flavors are filled up to a common Fermi momentum pF ≈ μ, intermediate
between the free-light-quark and free-strange-quark Fermi momenta. In the
absence of interactions, this state would be unstable: weak interactions would
turn strange quarks into light quarks, and there would be separate strange
and light Fermi momenta, each filled up to the Fermi energy μ. However,
pairing stabilizes it. For the paired state to be stable, it must be that the free
energy gained from turning a strange quark into a light quark is less than
the energy lost by breaking the Cooper pairs for the modes involved [44].√

μ2 +Ms(μ)2 −
√
μ2 +Mu(μ)2 ≈ Ms(μ)2 −Mu(μ)2

2μ
� 2Δus ,

i.e.,
Ms(μ)2

4μ
� Δus.

(11)

Here Ms(μ) and Mu(μ) are the constituent quark masses in the CFL phase,
and Mu(μ) � Ms(μ). An additional factor of 1/

√
2 on the RHS of (11) can

be obtained requiring the paired state to have lower free energy [48,49,44].
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Equation (11) implies that arbitrarily small values of Δus are impossible,
which means that the phase transition must be first order: the gap cannot
go continuously to zero. Such behavior has been found in calculations for
unlocking phase transitions of this kind in electron superconductors [48] and
nuclear superfluids [50] as well as QCD superconductors [35,51,52].

5.2 The Crystalline Color-Superconducting Phase

There is good reason to think that, in the region where the strange quark
is just on the edge of decoupling from the light quarks, another form of
pairing can occur. This is the “LOFF” state, first explored by Larkin and
Ovchinnikov [53] and Fulde and Ferrell [54] in the context of electron super-
conductivity in the presence of magnetic impurities. They found that near
the unpairing transition, it is favorable to form a state in which the Cooper
pairs have nonzero momentum. This is favored because it gives rise to a re-
gion of phase space where each of the two quarks in a pair can be close to
its Fermi surface, and such pairs can be created at low cost in free energy.
Condensates of this sort spontaneously break translational and rotational in-
variance, leading to gaps which vary periodically in a crystalline pattern. The
possible consequences for compact stars will be discussed in section 6.

In Ref. [49], the LOFF phase in QCD has been studied using a toy model
in which the quarks interact via a four-fermion interaction with the quantum
numbers of single-gluon exchange. The model only considers pairing between
u and d quarks, with μd = μ̄+δμ and μu = μ̄−δμ. For the rest of this section
we will discuss properties of the model, but it is important to remember that
in reality we expect a LOFF state wherever the difference between the Fermi
momenta of any two quark flavors is near an unpairing transition, for example
the unlocking phase transition between the 2SC and CFL phases.

The Nature of LOFF Pairing. Whereas the BCS state requires pairing
between fermions with equal and opposite momenta, for some values of δμ it
may be more favorable to form a condensate of Cooper pairs with nonzero
total momentum. By pairing quarks with momenta which are not equal and
opposite, some Cooper pairs are allowed to have both the up and down quarks
on their respective Fermi surfaces even when δμ �= 0. LOFF found that within
a range of δμ a condensate of Cooper pairs with momenta ku = q + p and
kd = q − p (see Fig. 8) is favored over either the BCS condensate or the
normal state. Here, our notation is such that p specifies a particular Cooper
pair, while q is a fixed vector, the same for all pairs, which characterizes a
given LOFF state. The magnitude |q| is determined by minimizing the free
energy; the direction of q is chosen spontaneously. The resulting LOFF state
breaks translational and rotational invariance. In position space, it describes
a condensate which varies as a plane wave with wave vector 2q.
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Fig. 8. The momenta ku and kd of the two members of a LOFF-state Cooper pair,
with both quarks near their respective Fermi surfaces

Results from a Simplified Model. In the LOFF state, each Cooper pair
carries momentum 2q, so the condensate and gap parameter vary in space
with wavelength π/|q|. In the range of δμ, where the LOFF state is favored,
|q| ≈ 1.2δμ. In Ref. [49], we simplify the calculation of the gap parameter
by assuming that the condensate varies in space like a plane wave, leaving
the determination of the crystal structure of the QCD LOFF phase to future
work. We make an ansatz for the LOFF wave function, and by variation
obtain a gap equation which allows us to solve for the gap parameter ΔA,
the free energy and the values of the diquark condensates which characterize
the LOFF state at a given δμ and |q|. We then vary the momentum |q| of the
ansatz, to find the preferred (lowest free energy) LOFF state at a given δμ,
and compare the free energy of the LOFF state to that of the BCS state with
which it competes. We show results for one choice of parameters in Fig. 9(a).

In Fig. 9 the average quark chemical potential μ̄ has been set to 0.4 GeV,
corresponding to a baryon density of about 4 to 5 times that in nuclear
matter. A crude estimate [49] suggests that in quark matter at this density,
δμ ∼ 15 − 30 MeV depending on the value of the density-dependent effective
strange quark mass.

We find that the LOFF state is favored for values of δμ which satisfy δμ1 <
δμ < δμ2 as shown in Fig. 9(b), with δμ1/Δ0 = 0.707 and δμ2/Δ0 = 0.754 in
the weak coupling limitΔ0 � μ. (Δ0 is the 2SC gap for δμ < δμ1, and one can
use it to parameterize the strength of the four fermion interaction G: small
Δ0 corresponds to a small G.) At weak coupling, the LOFF gap parameter
decreases from 0.23Δ0 at δμ = δμ1 (where there is a first-order BCS-LOFF
phase transition) to zero at δμ = δμ2 (where there is a second-order LOFF-
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Fig. 9. (a) LOFF and BCS gap parameters as a function of δμ, with coupling chosen
so that Δ0 = 40 MeV, and Λ = 1 GeV. The vertical dashed line marks δμ = δμ1,
above which the LOFF state has lower free energy than BCS. (b) The interval of
δμ within which the LOFF state occurs as a function of the coupling, parametrized
by the BCS gap Δ0 in GeV. Below the solid line, there is a LOFF state. Below the
dashed line, the BCS state is favored. The different lines of each type correspond to
different cutoffs on the four-fermion interaction: Λ = 0.8 GeV to 1.6 GeV. δμ1/Δ0

and δμ2/Δ0 show little cutoff-dependence, and the cutoff dependence disappears
completely as Δ0, δμ → 0
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normal transition). Except for very close to δμ2, the critical temperature
above which the LOFF state melts will be much higher than typical neutron
star temperatures. At stronger coupling the LOFF gap parameter decreases
relative to Δ0 and the window of δμ/Δ0 within which the LOFF state is
favored shrinks, as seen in Fig. 9(b).

6 Compact Stars
and Color-Superconducting Quark Matter

Having described the interesting phenomena that we believe occur in cold
quark matter, we now ask ourselves where in nature such phenomena might
occur, and how we might see evidence of them.

The only place in the universe where we expect sufficiently high densities
and low temperatures is compact stars, also known as “neutron stars”, since
it is often assumed that they are made primarily of neutrons (for a recent
review, see [55]). A compact star is produced in a supernova. As the outer
layers of the star are blown off into space, the core collapses into a very dense
object. Typical compact stars have masses close to 1.4M
, and are believed
to have radii of order 10 km. The density ranges from around nuclear density
near the surface to higher values further in, although uncertainty about the
equation of state leaves us unsure of the value in the core.

During the supernova, the core collapses, and its gravitational energy
heats it to temperatures of order 1011 K (tens of MeV), but it cools rapidly
by neutrino emission. Within a few minutes its internal temperature T drops
to 109 K (100 keV), and reaches 107 K (1 keV) after a century. Neutrino
cooling continues to dominate for the first million years of the life of the star.
The effective temperature Te of the X-ray emissions is lower than the internal
temperature: Te/106 K ≈ √

T/108 K [56].
Color superconductivity gives mass to excitations around the ground

state: it opens up a gap at the quark Fermi surface, and makes the gluons
massive. One would therefore expect its main consequences to relate to trans-
port properties, such as mean free paths, conductivities and viscosities. The
influence of color superconductivity on the equation of state is an O((Δ/μ)2)
(few percent) effect, which is not phenomenologically interesting given the
existing uncertainty in the equation of state at the relevant densities.

6.1 The Mixed Phase

Before surveying some of the suggested ways in which color superconductivity
might manifest itself, we will briefly review the possibility of a mixed phase,
in which regions of quark matter and nuclear matter are intermingled. To be
concrete, consider the case where the strange quark is light enough so that
quark pairing is always of the CFL type.
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Fig. 10. A schematic form of the μB-μe phase diagram for nuclear matter and CFL
quark matter, ignoring electromagnetism. For an explanation see the text

Figure 10 shows the μB-μe phase diagram, ignoring electromagnetism.
The unshaded region is where nuclear matter (NM) has higher pressure. The
shaded region is where quark matter (QM) has higher pressure. Where they
meet is the coexistence line. The medium solid lines labelled by values of the
pressure are isobars. Below the coexistence line they are given by the NM
equation of state, above it by the QM equation of state.

The thick lines are the neutrality lines. Each phase is negatively charged
above its neutrality line and positively charged below it. Dotted lines show
extensions onto the unfavored sheet (NM above the coexistence line, QM
below it).

The electric charge density is

Q = − ∂p

∂μe

∣∣∣∣
μB

. (12)

The neutrality line therefore goes through the right-most extremum of each
isobar, since there the derivative of pressure with respect to μe is zero. For the
CFL phase, the neutrality line is μe = 0. Turning up μe introduces electrons,
increasing the pressure.

Two possible paths from nuclear to CFL matter as a function of increas-
ing μ are depicted. In the absence of electromagnetism and surface tension,
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the favored option is evidently a mixed phase made of negatively charged
CFL matter and positively charged nuclear matter along the segment of the
coexistence line from A to D. On this segment, positively charged nuclear
matter coexists with negatively charged CFL matter, so for pressures in the
range pA to pD an overall neutral mixed phase can be created by choosing
an appropriate volume fraction of CFL relative to nuclear matter. If, on the
other hand, Coulomb and surface energies are large, then the mixed phase is
disfavored. The system remains on the nuclear neutrality line up to B, where
there is a single interface between nuclear matter at B and CFL matter at
C. This minimal interface, with its attendant charged boundary layers [57],
occurs between phases with the same μe, μ = μB = μC , and pressure P∗.
The effective chemical potential μeff

e changes across the interface, though, as
a result of the presence of the electric field. For more details on the single
interface, the mixed phase, and the competition between them, see Ref. [57].

As yet, not much work has been done on signatures related to these fea-
tures. The single interface creates a dramatic density discontinuity in the
star: CFL quark matter at about four times nuclear density floats on nuclear
matter at about twice nuclear density. This may affect the mass vs. radius
relationship for neutron stars with quark matter cores. It may also have quali-
tative effects on the gravitational wave profile emitted during the inspiral and
merger of two compact stars of this type. The mixed phase has distinctively
short neutrino mean free paths, due to coherent scattering [58]. Also, the
droplets form a crystal lattice that could pin vortices, leading to glitches.

6.2 Cooling by Neutrino Emission

As mentioned above, for its first million or so years, a neutron star cools by
neutrino emission. The temperature is obtained from X-ray spectra of iso-
lated compact stars, and is subject to many uncertainties, including emissions
from plasma around the star, and distortion of the spectrum by a possible
hydrogen atmosphere. The age, inferred from the spindown rate by assum-
ing magnetic dipole radiation from a constant dipole moment, may also have
large systematic errors. Even so, a consistent picture emerges [59,56] in which
the youngest compact stars, about a thousand years old, have surface tem-
peratures around 2×106 K (200 eV), falling to about 3×105 K (30 eV) after
a million years.

The cooling rate is determined by the heat capacity and emissivity, both
of which are dominated by quark modes whose energy is within T of the
Fermi surface, and are therefore sensitive to the kind of gaps generated by
color superconductivity [59,60,56].

In the CFL phase, all quarks and gluons have gaps Δ � T , electrons
are absent [44], and the transport properties are dominated by the only true
Goldstone excitation, the superfluid mode arising from the breaking of the
exact baryon number symmetry. The next lightest modes are the pseudo-
Goldstone bosons associated with chiral symmetry breaking, which will only
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participate when the temperature is above their mass, which is of order tens of
MeV [61]. This means that CFL quark matter has a much smaller neutrino
emissivity and heat capacity than nuclear matter, and hence the cooling
of a neutron star is likely to be dominated by the nuclear mantle rather
than the CFL core [56]. A CFL core is therefore not detectable by cooling
measurements.

We turn now to the 2SC quark matter phase, which occurs if the strange
quarks are too heavy to pair with the light flavors. Up and down quarks of two
of the colors (red and green, say) pair strongly with a gap much bigger than
the temperature. This leaves the blue up and down, and the strange quarks
(if present) with much more weakly attractive channels in which to pair. The
strange quarks are believed to pair with each other in a “color-spin locked”
condensate, with a gap of order hundreds of keV [40] or less [49]. The blue up
and down quarks form J = 1 pairs, breaking rotational invariance [6], with a
gap that was originally estimated to be in the keV range, but this estimate
is not robust, and depends on details of the NJL model used [6].

This leads to potentially interesting phenomenology, since the blue and/or
strange quarks have small gaps, so during the early life of the compact star
they may participate in the cooling dynamics as long as the temperature is
greater than their gap. Their effects would be dramatic, allowing high rates
of neutrino emission via direct URCA processes such as d → u + e + ν̄ and
u → d+ e+ + ν, and leading to rapid cooling of the core [59,56]. The cooling
would slow down suddenly when the temperature fell below the gap. Such a
behavior would be observable, and if no sign of it is seen as our observations
of neutron star temperatures improve then we will have to conclude that
either 2SC matter does not occur, or the smallest gaps are larger than the
observed temperatures.

6.3 The Neutrino Pulse at Birth

We have seen above that in the first seconds of a supernova, the inner regions
(“protoneutron star”) are heated to tens of MeV by the gain of a vast amount
of energy from the gravitational collapse, and are consequently hot (tens of
MeV). Over the next half-minute or so much of the energy is radiated off
as neutrinos, whose detailed spectrum as a function of time is determined
by the neutrino diffusion properties of the protoneutron star. Neutrinos from
supernova 1987A were detected in terrestrial experiments, and the duration
and mean energy of the pulse was measured. We can hope that neutrinos
from future supernovae in our galaxy will be measured more precisely. It is
therefore useful to study the effects of color superconductivity on neutrino
diffusion, in order to see if it leads to any signature in the neutrino pulse.

Carter and Reddy [62] have performed a preliminary investigation of this
question. They restricted themselves to two flavors, and studied the case
where the core starts off as a hot quark-gluon plasma. Within seconds, thanks
to neutrino emission, it cools into a superconducting phase, and they assumed
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that this occurred via a second-order phase transition. This leads to a striking
two-stage signature. (1) Near the critical temperature Tc, the heat capacity
rises, and the cooling of the star consequently slows. (2) Below the critical
temperature, the quark modes are gapped, and the neutrino mean free path is
enhanced by exp(Δ/T ), reflecting Boltzmann suppression of the population
of quark quasiparticles. As a result, the core may suddenly empty itself of
neutrinos, creating a final neutrino burst. There may be further processing
of this burst on its way out of the supernova, but the suggestion is that it
may survive to yield a noticeable signal in neutrino detectors on earth. The
suggestion, then, is that the flux of supernova neutrinos detected on earth
will not taper off, but show a final burst followed by no flux. Before that,
there may be a plateau in the energy or flux of the neutrinos, as the cooling
slows near the critical temperature.

There are many issues that require further investigation. It is not clear
whether a second-order phase transition is to be expected, since the up - and
down - quark Fermi surfaces will differ, and there may be a first-order unlock-
ing transition [52]. Also, it is necessary to take into account the strange quark,
and the processing of emitted neutrinos by the layers of neutrino-opaque
hadronic matter that surround the core during the supernova explosion.

6.4 r-Mode Instability

Fig. 11. The quadrupole pattern of r-mode bulk flows

The term “r-mode” (short for “rotational mode”) refers to a bulk flow
in a rotating star that radiates away energy and angular momentum in the
form of gravitational waves (Fig. 11). If the rotation frequency f of the star
is above a critical value f∗, the system becomes unstable to r-modes and will
quickly spin down until its frequency drops to f∗, at which point the r-modes
are damped out. The critical frequency depends on the sources of damping
that could suppress the flows. These include shear and bulk viscosities, and
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also “surface rubbing” – the friction at the interface between the r-mode
region and any rigid crust that cannot flow. Since the viscosities are sensitive
functions of temperature, one calculates f∗(T ) as an upper limit on rotation
frequencies, and thereby maps out an excluded high-f region in the T -f plane.
Differently constituted compact stars (neutrons, quarks with various gaps due
to pairing) have different excluded regions, and one can see whether any of
them are ruled out by the observation of pulsars in nature with rotation rates
and temperatures in their excluded region.

Madsen [63] has shown that gapless quark matter and neutron stars are
not ruled out. However, color superconductivity creates gaps in the quark ex-
citation spectrum, suppressing the viscosities by factors of order exp(−Δ/T ),
and encouraging r-mode spindown. He found that for a compact star made
entirely of quark matter in the CFL phase, even a quark gap as small as
Δ = 1 MeV reduces f∗(T ) dramatically to O(100 Hz) for temperatures be-
low 109 K (100 keV). This means that millisecond pulsars, with frequencies
up to 640 Hz, cannot be CFL quark matter stars, making it questionable
whether any compact stars are made entirely of CFL quark matter. Madsen
found that 2SC quark matter stars were on the edge of being ruled out, so
he was not able to say anything about them, either positive or negative.

Madsen included the additional damping from surface rubbing between
the quark matter and a normal matter crust. Using the conventional picture,
this is a very small effect, since the crust is separated from the quark matter
by an electrostatic cushion of electrons, and so surface rubbing made no
difference to the result for pure CFL stars. Actually, since CFL matter is
neutral [44], it contains no electrons, so the cushioning mechanism may not
be operative, and it is not clear that there is any such crust.

There are caveats to Madsen’s conclusions. Firstly, the results are sensitive
to the temperature of the inner regions of the star, which has to be inferred
from the measured effective surface temperature using models of the heat
flow, and is therefore not accurately known. However, this uncertainty is
only important for unpaired or 2SC paired quark matter; pure CFL stars are
ruled out for Te < 109 K (100 keV), which is already at the upper end of
conceivable temperatures. Secondly, as he points out, his calculations do not
rule out the generic picture of how quark matter occurs in compact stars,
namely as a quark matter core surrounded by a nuclear mantle. In this case
substantial friction is expected at the core-mantle interface, and this may be
enough [64,63] to stabilize the star irrespective of the viscosities of the quark
matter. Furthermore, quark matter may contain a shell of LOFF crystal (see
below), and the r-modes could be damped at the edges of that region rather
than at the crust. We can hope that future work on hybrid stars will clarify
the situation.
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6.5 Magnetic Field Decay

The behavior of magnetic fields in quark matter is quite different from that in
nuclear matter [65,66]. Nuclear matter is an electromagnetic superconductor
(because of proton-proton pairing which breaks the U(1)Q gauge symmetry)
and also a superfluid (because of neutron-neutron pairing). Magnetic fields
are therefore restricted to Abrikosov flux tubes, and angular momentum is
carried by rotational vortices. The magnetic flux tubes can be dragged about
by the outward motion of the rotational vortices as the neutron star spins
down [67,68,69,70,71], and can also be pushed outward if the gap at the
proton Fermi surface increases with depth within the neutron star [72]. One
therefore expects the magnetic field of an isolated pulsar to decay over billions
of years as it spins down [68,69,70,71] or perhaps more quickly [72]. However,
there is no observational evidence for the decay of the magnetic field of an
isolated pulsar over periods of billions of years [69,73]

A color superconductor, on the other hand, leaves unbroken a rotated
electromagnetism U(1)Q̃, a mixture of photon and gluon, allowing long-range
Q̃-magnetic fields. This is true of the CFL phase, and also of the 2SC phase
as long as the temperature is high enough so that the blue quarks do not
pair.

The new unbroken rotated electromagnetic field AQ̃ is just a linear com-
bination of the photon Aμ and one of the gluons G8

μ,

AQ̃
μ = cosα0Aμ + sinα0G

8
μ, (13)

the orthogonal combination AX
μ is massive. The mixing angle α0 is the ana-

logue of the Weinberg angle in electroweak theory, in which the presence
of the Higgs condensate causes the hypercharge and W3 gauge bosons to
mix to form the photon, Aμ, and the massive Z boson. sin(α0) is propor-
tional to e/g and turns out to be about 1/20 in the 2SC phase and 1/40
in the CFL phase [66]. This means that the Q̃-photon which propagates in
color-superconducting quark matter is mostly photon with only a small gluon
admixture. If a color-superconducting neutron star core is subjected to an
ordinary magnetic field, it will either expel the X component of the flux or
restrict it to flux tubes, but it admits the great majority of the flux in the
form of a BQ̃ magnetic field satisfying Maxwell’s equations. The decay in time
of this “free field” (i.e. not in flux tubes) is limited by the Q̃-conductivity of
the quark matter.

The CFL phase contains no electrons, and all its charged modes are
gapped, making it an electromagnetic insulator. The 2SC phase has elec-
trons as well as blue quasiquarks, and turns out to be a very good conductor.
Thus the 2SC and CFL phases, while both allowing long-range Q̃-flux fields,
react very differently to attempts to change the magnetic field. The CFL
phase allows such changes, but the 2SC, as a near-perfect conductor, gener-
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ates eddy currents that oppose the change, locking the magnetic field into
the core with a decay time of order 1013 years [66]

This means that a 2SC quark matter core within a neutron star can
act as an “anchor” for the magnetic field, preventing the flux-tube-dragging
mechanism that can operate in ordinary nuclear matter. Even though this
distinction is a qualitative one, it will be difficult to confront it with data
since what is observed is the total dipole moment of the neutron star. A
color-superconducting core can only anchor those magnetic flux lines which
pass through the core, while in a neutron star with no quark matter core the
entire internal magnetic field can decay over time. In both cases, however,
the total dipole moment can change since the magnetic flux lines which do
not pass through the core can move.

6.6 Glitches and the Crystalline Color Superconductor

The crystalline LOFF phase has been discussed above. It occurs when two
different types of quark have different Fermi momenta (because their masses
or chemical potentials are different) and are just barely able to pair.

Such situations are likely to be generic in nature, where, because of the
strange quark mass, combined with requirements of weak equilibrium and
charge neutrality, all three flavors of quark in general have different chemical
potentials. To date the LOFF condensate has only been studied in simplified
two-flavor models, so it is not clear whether it can be expected to occur in
compact stars. However, in the model a LOFF phase occurred if the gap
Δ0 which characterizes the uniform color superconductor present at smaller
values of δμ was about 40 MeV [49]. This is in the middle of the range
of present estimates of superconducting gaps. It is therefore worthwhile to
consider the consequences.

Glitches and Vortex Pinning. Glitches are sudden jumps in rotation fre-
quency Ω of a pulsar, which may be as large as ΔΩ/Ω ∼ 10−6, but may also
be several orders of magnitude smaller. The frequency of observed glitches is
statistically consistent with the hypothesis that all radio pulsars experience
glitches [74]. Glitches are thought to originate in the rigid neutron star crust,
typically somewhat more than a kilometer thick, where rotational vortices
in a neutron superfluid are pinned to the crystal structure of the crust. As
the pulsar’s spin gradually slows, the vortices must gradually move outwards
since the rotation frequency of a superfluid is proportional to the density of
vortices. Models [75] differ in important respects as to how the stress asso-
ciated with pinned vortices is released in a glitch: for example, the vortices
may break and rearrange the crust, or a cluster of vortices may suddenly over-
come the pinning force and move macroscopically outward, with the sudden
decrease in the angular momentum of the superfluid within the crust re-
sulting in a sudden increase in angular momentum of the rigid crust itself
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and hence a glitch. All the models agree that the fundamental requirements
are the presence of rotational vortices in a superfluid and the presence of a
rigid structure which impedes the motion of vortices and which encompasses
enough of the volume of the pulsar to contribute significantly to the total
moment of inertia.

It is reasonable to expect that a real-world LOFF phase is a superfluid,
since it would involve pairing of the strange quarks with the light quarks,
which is what makes the CFL phase a superfluid. This means that if it occurs
within a pulsar it will be threaded by an array of rotational vortices. It is
natural to expect that these vortices will be pinned in a LOFF crystal, in
which the diquark condensate varies periodically in space. Indeed, one of
the suggestions for how to look for a LOFF phase in terrestrial electron
superconductors relies on the fact that the pinning of magnetic flux tubes
(which, like the rotational vortices of interest to us, have normal cores) is
expected to be much stronger in a LOFF phase than in a uniform BCS
superconductor [76]. Note that the chiral crystal phase [47] is not a superfluid,
so it will not contain rotational vortices.

Vortex Pinning in the LOFF Phase. A real calculation of the pinning
force experienced by a vortex in a crystalline color superconductor must await
the determination of the crystal structure of the LOFF phase. We can, how-
ever, attempt an order of magnitude estimate along the same lines as that
done by Anderson and Itoh [77] for neutron vortices in the inner crust of
a neutron star. In that context, this estimate has since been made quan-
titative [78,79,75]. For one specific choice of parameters [49], the resulting
pinning force per unit length of vortex was estimated essentially by dimen-
sional analysis at

LOFF: fp ∼ (4 MeV)/(80 fm2). (14)

It is premature to compare such a crude result to the results of serious cal-
culations [78,79,75], but it is remarkable that they prove to be similar: the
pinning force per unit length for neutron vortices in the inner crust is

neutron star: fp ≈ (1 − 3 MeV)/(200 − 400 fm2). (15)

This raises the possibility that pulsars might be strange stars after all
[80,81]. Strange quark stars are made almost entirely of quark matter with
either no hadronic matter content at all or perhaps a thin crust, of order
one hundred meters thick, which contains no neutron superfluid [81,82]. No
successful models of glitches in the crust of a strange quark star have been
proposed, indicating that pulsars are not strange stars [83,84,85]. The possi-
bility of a shell of crystalline LOFF quark matter inside a quark star revives
the possibility that glitches could occur in quark stars, as a result of the
pinning of quark-superfluid vortices to the LOFF crystal.
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7 Conclusions

Quark pairing and color superconductivity are phenomena that have been
discussed and speculated upon for some time. Only in recent years, however,
has the resultant structure of the QCD phase diagram been considered in any
detail. As outlined in Sects. 2 to 5 above, the phase diagram has been found
to be full of unexpected richness. There are many directions that remain to
be explored, from new pairing structures to detailed studies of the known
2SC, 2SC+s, CFL, and LOFF phases. It has even been suggested that zero-
density QCD can be understood in terms of a quark-paired condensate in
combination with an adjoint chiral condensate [86].

The search for signatures of color superconductivity is now proceeding in
earnest. The most promising area is the phenomenology of neutron/quark
stars, which are the only naturally occurring example of cold matter at den-
sities where quark matter might occur. The first steps in this endeavor have
been described in section 6. It would be a great stride forward if, at the
same time as heavy-ion colliders map the high-temperature region of the
QCD phase diagram, astrophysical observations and calculations could com-
plement it by filling in details of the high-density region.
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Theory of the Quark-Gluon Plasma
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1 Introduction

In spite of what the title might suggest, I shall not try to cover in this article
all interesting aspects of the theory of the quark-gluon plasma. Rather, I shall
focus on progress made in recent years in understanding the high temperature
phase of QCD by using weak coupling techniques. Such techniques go far
beyond strict perturbation theory viewed as an expansion in powers of the
gauge coupling. In fact such an expansion becomes meaningless as soon as
the coupling is not vanishingly small. However, we shall see that a rather
simple structure emerges from weak coupling studies, with a characteristic
hierarchy of scales and degrees of freedom. The interactions renormalize the
properties of these elementary degrees of freedom, but do not destroy the
simple picture of the high temperature quark-gluon plasma as a system of
weakly interacting quasiparticles. As we shall see at the end of this article,
this picture is supported by a first principle calculation of the entropy which
reproduces accurately lattice data above 2 or 3 times the critical temperature.

Some of the material presented here is borrowed from the recent review [1],
and complements can also be found in [2,3,4,5,6]. Another perspective on
some of the topics discussed here can be found in the article by A. Rebhan
in this volume.

The outline of the article is the following. In order to get a first rough pic-
ture of the phase diagram of hadronic matter I use the bag model to describe
the quark-hadron phase transition: this exercise will give us some familiar-
ity with the thermodynamics of massless, non-interacting, particles. Then I
briefly recall some techniques of quantum field theory at finite temperature
needed to treat the interactions [7,8,9,10,11,12], and introduce the concept
of effective theory in a simple case of a scalar field. Then I proceed to an
analysis of the various important scales and degrees of freedom of the quark-
gluon plasma and focus on the effective theory for the collective modes which
develop at the particular momentum scale gT , where g is the gauge cou-
pling and T the temperature. A powerful technique to construct the effective
theory is based on kinetic equations which govern the dynamics of the hard
degrees of freedom. Some of the collective phenomena that are described by
this effective theory are briefly mentioned. Then I turn to the calculation of
the entropy and show how the information coded in the effective theory can
be exploited in (approximately) self-consistent calculations [13,14,15].

W. Plessas and L. Mathelitsch (Eds.): LNP 583, pp. 117–160, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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2 The Quark-Hadron Transition in the Bag Model

The phase diagram of dense hadronic matter has the expected shape indi-
cated in Fig. 1. There is a low density, low temperature region, corresponding
to the world of ordinary hadrons, and a high density, high temperature region,
where the dominant degrees of freedom are quarks and gluons. The precise
determination of the transition line requires elaborate non-perturbative tech-
niques, such as those of lattice gauge theories (see the article by F. Karsch
in this volume). However, but one can get rough orders of magnitude for the
transition temperature and density using a simple model dealing mostly with
non-interacting particles [3,5].

μ

T
Quark-Gluon Plasma 

Hadrons

Tc

Bcμ

Fig. 1. The expected phase diagram of hot and dense hadronic matter in the plane
(μB , T ), where T is the temperature and μB the baryon chemical potential

Let us first consider the transition in the case where μB = 0. At low
temperature this baryon free matter is composed of the lightest mesons, i.e.
mostly the pions. At sufficiently high temperature one should also take into
account heavier mesons, but in the present discussion this is an inessential
complication. We shall even make a further approximation by treating the
pion as a massless particle. At very high temperature, we shall consider that
hadronic matter is composed only of quarks and antiquarks (in equal num-
bers), and gluons, forming a quark-gluon plasma. In both the high tempera-
ture and the low temperature phases, interactions are neglected (except for
the bag constant to be introduced below). The description of the transition
will therefore be dominated by entropy considerations, i.e. by counting the
degrees of freedom.

The energy density ε and the pressure P of a gas of massless pions are
given by:

ε = 3 · π
2

30
T 4 , P = 3 · π

2

90
T 4, (1)

where the factors 3 account for the 3 types of pions (π+, π−, π0).
The energy density and pressure of the quark-gluon plasma are given by

similar formulae:

ε = 37 · π
2

30
T 4 +B,
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P = 37 · π
2

90
T 4 −B, (2)

where 37 = 2×8+ 7
8 ×2×2×2×3 is the effective number of degrees of freedom

of gluons (8 colors, 2 spin states) and quarks (3 colors, 2 spins, 2 flavors, q
and q̄). The quantity B, which is added to the energy density, and subtracted
from the pressure, summarizes interaction effects which are responsible for a
change in the vacuum structure between the low temperature and the high
temperature phases. It was introduced first in the “bag model” of hadron
structure as a restoring force needed to equilibrate the pressure generated by
the kinetic energy of the quarks inside the bag [16]. Roughly, the energy of
the bag is

E(R) =
4π
3
R3B +

C

R
, (3)

where C/R is the kinetic energy of massless quarks. Minimizing with respect
to R, one finds that the energy at equilibrium is E (R0) = 4BV0, where
V0 = 4πR3

0/3 is the equilibrium volume. For a proton with E0 ≈ 1 GeV and
R0 ≈ 0.7 fm, one finds E0/V0  0.7 GeV/fm3, which corresponds to a “bag
constant” B ≈ 175 MeV/fm3, or B1/4 ≈ 192 MeV.

We can now compare the two phases as a function of the temperature.
Fig. 2 shows how P varies as a function of T 4. One sees that there exists a
transition temperature

Tc =
(

45
17π2

)1/4

B1/4 ≈ 0.72 B1/4, (4)

beyond which the quark-gluon plasma is thermodynamically favored (has
largest pressure) compared to the pion gas. For B1/4 ≈ 200 MeV, Tc ≈ 150
MeV.

Fig. 2. The pressure of the massless pion gas compared to that of a quark-gluon
plasma, showing the transition temperature Tc
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The variation of the entropy density s = ∂P/∂T as a function of the tem-
perature is displayed in Fig. 3. Note that the bag constant B does not enter
explicitly the expression of the entropy. However, B is involved in Fig. 3 indi-
rectly, via the temperature Tc where the discontinuity Δs occurs. One verifies
easily that the jump in entropy density Δs = Δε/Tc is directly proportional
to the change in the number of active degrees of freedom when T crosses Tc.

In order to extend these considerations to the case where μB �= 0, we
note that the transition is taking place when the total pressure approxi-
mately vanishes, that is when the kinetic pressure of quarks and gluons ap-
proximately equilibrates the bag pressure. Taking as a criterion for the phase
transition the condition P = 0, one replaces the value (4) for Tc by the value
(90/37π2)1/4B1/4 ≈ 0.70B1/4, which is nearly identical to (4). We shall then
assume that for any value of μB and T , the phase transition occurs when
P (μB , T ) = B, where B is the bag constant and P (μB , T ) is the kinetic
pressure of quarks and gluons:

P (μB , T ) =
37
90
π2T 4 +

μ2
B

9
(T 2 +

μ2
B

9π2 ). (5)

The transition line is then given by P (μc, Tc) = B, and it has indeed the
shape illustrated in Fig. 1.

s

T
3

pions

quark-gluon
plasma

T
3
c

0

Δs
spl

sh

Fig. 3. The entropy density. The jump Δs at the transition is proportional to the
increase in the number of active degrees of freedom

The model that we have just described reproduces some of the bulk fea-
tures of the equation of state obtained through lattice gauge calculations (see
the article by F. Karsch in this volume). In particular, it exhibits the charac-
teristic increase of the entropy density at the transition which corresponds to
the emergence of a large number of new degrees of freedom associated with
quarks and gluons. Its simplicity has made it popular, for instance, among the
practitioners of hydrodynamic calculations with which one tries to simulate
the behavior of matter produced in high energy nuclear collisions. As such
it has been very useful. One should be cautious, however, when attempting
to draw too detailed conclusions about the nature of the phase transitions
from such simple models. In particular this model predicts (by construction!)
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a discontinuous transition; but this prediction should not be trusted. Further
discussion of this model can be found in [3].

3 Quantum Fields at Finite Temperature

The effects of interactions among quarks and gluons at finite temperature can
be calculated by using the tools of quantum field theory at finite temperature.
We shall briefly recall some essential formalism, and emphasize in particular
the periodicity properties of the propagators. At the end of this section we
discuss, with a simple example of a scalar field, the method of effective field
theory which proves useful in problems where various scales can be separated.
In the example that we shall consider, the separation of scale is provided by
the Matsubara frequencies. As we shall see, in some cases, one is lead to
single out the mode with vanishing Matsubara frequency. The corresponding
effective theory is a classical field in three dimensions, and the procedure
commonly called ‘dimensional reduction’.

3.1 Finite Temperature Calculations

All thermodynamic observables can be deduced from the partition function:

Z = tr e−βH . (6)

Thus the energy density and the pressure are given by:

ε = − 1
V

∂

∂β
lnZ, P =

1
β

∂

∂V
lnZ. (7)

In order to calculate the partition function, one may observe that e−βH is
like an evolution operator in imaginary time:

t → −iβ, e−iHt → e−βH . (8)

One may then take advantage of all the techniques developed to evaluate
matrix elements of the evolution operator in quantum mechanics or field
theory.

For instance, one may use a perturbative expansion. We assume that one
can split the Hamiltonian into H = H0 +H1 with H1 � H0, and define the
following “interaction representation” of the perturbation H1:

H1(τ) = eτH0H1e
−τH0 , (9)

and similarly for other operators. Using standard techniques, one can then
obtain the following expression for the partition function Z:

Z = Z0 〈T exp

{
−
∫ β

0
dτH1(τ)

}
〉0. (10)
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In this equation, the symbol T implies an ordering of the operators on its
right, from left to right in decreasing order of their time arguments; Z0 =
tr e−βH0 and, for any operator O,

〈O〉0 ≡ Tr
(
e−βH0

Z0
O
)
. (11)

One commonly refers to τ as the “imaginary time” (τ is real). This τ has
no direct physical interpretation: its role here is to properly keep track of
ordering of operators in the perturbative expansion.

In field theory, it is often more convenient to use the formalism of path
integrals. Let us recall, for instance, that for one particle in one dimension
the matrix element of the evolution operator can be written as

〈q2|e−iHt|q1〉 =
∫ q(t)=q2

q(0)=q1

D (q (t)) ei
∫ t2

t1 ( 1
2 mq̇2−V (q))dt , (12)

where q1 and q2 denote the positions of the particle at times 0 and t respec-
tively. Changing t → −iτ, and taking the trace, one obtains the following
formula for the partition function:

Z = tr e−βH =
∫

q(β)=q(0)
D(q) exp

{
−
∫ β

0

(
1
2
mq̇2 + V (q)

)}
. (13)

This expression immediately generalizes to the case of a scalar field, for
which the Lagrangian is of the form:

L =
1
2
∂μφ∂

μφ− m2

2
φ2 − V (φ)

=
1
2
(∂0φ)2 − 1

2
(∇φ)2 − m2

2
φ2 − V (φ). (14)

Again, we replace t by −iτ , ∂0 = ∂t by i∂τ , so that (∂0φ)2 → −(∂τφ)2. The
partition function becomes then (integrations over spatial coordinates are
implicit):

Z =
∫

D(φ) exp

{
−
∫ β

0
dτ

(
1
2
(∂τφ)2 +

1
2
(∇φ)2 +

m2

2
φ2 + V (φ)

)}
,

(15)

where the integral is over periodic fields: φ(0) = φ(β).

Remarks. i) The partition function (15) may be viewed formally as a sum
over classical field configurations in four dimensions, with particular boundary
conditions in the (imaginary) time direction.
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ii) At high temperature, β → 0, the time dependence of the fields play no
role. The partition function becomes that of a classical field theory in three
dimensions:

Z =
∫

D(φ) exp
{

−β

∫
d3r

(
1
2
(∇φ)2 +

m2

2
φ2 + V (φ)

)}
. (16)

Ignoring the time dependence of the fields amounts to take into account only
the Matsubara frequency iων = 0. We shall discuss later explicit examples of
this “dimensional reduction”.
iii) Note the Euclidean metric in (15). Since the integrand is the exponential of
a negative definite quantity, it is well suited to numerical evaluations, using, for
instance, the lattice technique.

3.2 Free Propagators

An important feature of the path integral representation of the partition
function is the boundary conditions to be imposed on the fields over which
one integrates. For the scalar case considered here, the field has to be periodic
in imaginary time, with a period β. Similar conditions hold for the fermion
fields, which are antiperiodic in imaginary time, with the same period β. It
is instructive to see how these periodicity conditions emerge in the operator
formalism, and for this reason we consider now the free propagators, first in
the simple case of the non-relativistic many body problem. The generalization
to relativistic fields is straightforward.

Let us consider a system with unperturbed Hamiltonian:

H0 =
∑

k

εk a
†
kak, (17)

where k denotes the set of quantum numbers necessary to specify a single
particle state, for instance the three components of the momentum. We define
time-dependent creation and annihilation operators in the interaction picture:

a†
k(τ) ≡ eτH0a†

ke
−τH0 = eεkτa†

k

ak(τ) ≡ eτH0ake
−τH0 = e−εkτak. (18)

The last equalities follow (for example) from the commutation relations:

[H0, a
†
k] = εka

†
k, [H0, ak] = −εkak (19)

which hold for bosons and fermions. The single-particle propagator can then
be obtained by a direct calculation:

Gk(τ1 − τ2) = 〈Tak(τ1)a
†
k(τ2)〉0

= e−εk(τ1−τ2) [θ(τ1 − τ2)(1 ± nk) ± nkθ(τ2 − τ1)] , (20)

where
nk ≡ 〈a†

kak〉0 =
1

eβεk ∓ 1
, (21)
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and the upper (lower) sign is for bosons (fermions). One can verify on the
expression (20) that, in the interval −β < τ = τ1−τ2 < β, Gk(τ) is a periodic
(boson) or antiperiodic (fermion) function of τ :

Gk(τ − β) = ±Gk(τ) (0 ≤ τ ≤ β). (22)

(To show this relation note that eβεknk = 1 ± nk.) It can therefore be repre-
sented by a Fourier series

Gk(τ) =
1
β

∑
ν

e−iωντGk(iων), (23)

where the ων ’s are called the Matsubara frequencies:

ων = 2νπ/β bosons,
ων = (2ν + 1)π/β fermions. (24)

The inverse transform is given by

G(iων) =
∫ β

0
dτ eiωντG(τ) =

1
H0 − iων

. (25)

Using the property

δ(τ) =
1
β

∑
ν

e−iωντ , −β < τ < β (26)

and (23), it is easily seen that G(τ) satisfies the differential equation

(∂τ +H0)G(τ) = δ(τ), (27)

which may be also verified directly from (20). Alternatively, the single prop-
agator at finite temperature may be obtained as the solution of this equation
with periodic (bosons) or antiperiodic (fermions) boundary conditions.

Remark. The periodicity or antiperiodicity that we have uncovered on the
explicit form of the unperturbed propagator is, in fact, a general property of the
propagators of a many-body system in thermal equilibrium. It is a consequence
of the commutation relations of the creation and annihilation operators and the
cyclic invariance of the trace.

The propagator of the free scalar field Δ(τ) = 〈Tφ(τ1)φ(τ2〉, where τ ≡
τ1 − τ2, satisfies the differential equation[−∂2

τ1
− ∇2

1 +m2]Δ(τ1r1; τ2r2) = δ(τ1 − τ2)δ(r1 − r2), (28)

and obeys periodic boundary conditions. It admits the Fourier representation

Δ(τ) =
1
β

∑
n

e−iωnτΔ(iωn), (29)
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where ωn = 2πn/β and

Δ(iωn) =
1

ε2k − ω2
n

. (30)

By inverting the Fourier transform (30), one gets

Δ(τ) =
1

2εk

{
(1 +Nk)e−εk|τ | +Nke

εk|τ |
}
, (31)

with Nk = 1/(eβεk − 1).

3.3 Classical Field Approximation and Dimensional Reduction

In the high temperature limit, β → 0, the imaginary-time dependence of the
fields frequently becomes unimportant and can be ignored in a first approx-
imation. The integration over imaginary time becomes then trivial and the
partition function (15) reduces to:

Z ≈ N
∫

D(φ) exp
{

−β
∫

d3xH(x)
}
, (32)

where φ ≡ φ(x) is now a three-dimensional field, and

H =
1
2

(∇φ)2 +
m2

2
φ2 + V (φ) . (33)

The functional integral in (32) is recognized as the partition function for
static three-dimensional field configurations with energy

∫
d3xH(x). We shall

refer to this limit as the classical field approximation.
Ignoring the time dependence of the fields is equivalent to retaining only

the zero Matsubara frequency in their Fourier decomposition. Then the
Fourier transform of the free propagator is simply:

G0(k) =
T

ε2k
. (34)

This may be obtained directly from (29) keeping only the term with ων = 0, or
from Eq. (31) by ignoring the time dependence and using the approximation

N(εk) =
1

eβεk − 1
≈ T

εk
. (35)

Both approximations make sense only for εk � T , implying N(εk) � 1. In
this limit, the energy per mode is ∝ εkN(εk) ≈ T , as expected from the
classical equipartition theorem.

The classical field approximation may be viewed as the leading term in
a systematic expansion. To see that, let us expand the field variables in the
path integral (15) in terms of their Fourier components:

φ(τ) =
1
β

∑
ν

e−iωντφ(iων), (36)
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where the ων ’s are the Matsubara frequencies. The path integral (15) can
then be written as:

Z = N1

∫
D(φ0) exp {−S[φ0]} , (37)

where φ0 ≡ φ(ων = 0) depends only on spatial coordinates, and

exp {−S[φ0]} = N2

∫
D(φν �=0) exp

{
−
∫ β

0
dτ
∫

d3xLE(x)

}
. (38)

The quantity S[φ0] may be called the effective action for the “zero mode”
φ0. Aside from the direct classical field contribution that we have already
considered, this effective action receives also contributions from integrating
out the non-vanishing Matsubara frequencies. Diagrammatically, S[φ0] is the
sum of all the connected diagrams with external lines associated to φ0, and
in which the internal lines are the propagators of the non-static modes φν �=0.
Thus, a priori, S[φ0] contains operators of arbitrarily high order in φ0, which
are also non-local. In practice, however, one wishes to expand S[φ0] in terms
of local operators, i.e., operators with the schematic structure am, n∇mφn

0
with coefficients am, n to be computed in perturbation theory.

To implement this strategy, it is useful to introduce an intermediate scale
Λ (Λ � T ) which separates hard (k >∼ Λ) and soft (k <∼ Λ) momenta. All
the non-static modes, as well as the static ones with k >∼ Λ are hard (since
K2 ≡ ω2

ν + k2 >∼ Λ2 for these modes), while the static (ων = 0) modes with
k <∼ Λ are soft. Thus, strictly speaking, in the construction of the effective
theory along the lines indicated above, one has to integrate out also the
static modes with k >∼ Λ. The benefits of this separation of scales are that
(a) the resulting effective action for the soft fields can be made local (since the
initially non-local amplitudes can be expanded out in powers of p/K, where
p � Λ is a typical external momentum, and K >∼ Λ is a hard momentum
on an internal line), and (b) the effective theory is now used exclusively at
soft momenta, where classical approximations such as (35) are expected to be
valid. This strategy, which consists in integrating out the non-static modes in
perturbation theory in order to obtain an effective three-dimensional theory
for the soft static modes (with ων = 0 and k ≡ |k| <∼ Λ), is generally referred
to as “dimensional reduction” [17,18,19,20,21,22].

As an illustration let us consider a massless scalar theory with quartic
interactions; that is, m = 0 and V (φ) = (g2/4!)φ4 in (14). The ensuing
effective action for the soft fields (which we shall still denote as φ0) reads

S[φ0] = βF(Λ)

+
∫

d3x

{
1
2

(∇φ0)2 +
1
2
M2(Λ)φ2

0 +
g2
3(Λ)
4!

φ4
0 +

h(Λ)
6!

φ6
0 +ΔL

}
,

(39)
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where F(Λ) is the contribution of the hard modes to the free-energy, and
ΔL contains all the other local operators which are invariant under rotations
and under the symmetry φ → −φ, i.e., all the local operators which are
consistent with the symmetries of the original Lagrangian. We have changed
the normalization of the field (φ0 → √

Tφ0) with respect to (32)–(33), so
as to absorb the factor β in front of the effective action. The effective “cou-
pling constants” in (39), i.e. M2(Λ), g2

3(Λ), h(Λ) and the infinitely many
parameters in ΔL, are computed in perturbation theory, and depend upon
the separation scale Λ, the temperature T and the original coupling g2. To
lowest order in g, g2

3 ≈ g2T , h ≈ 0 (the first contribution to h arises at or-
der g6, via one-loop diagrams), and M ∼ gT , as we shall see shortly. Note
that eq. (39) involves in general non-renormalizable operators, via ΔL. This
is not a difficulty, however, since this is only an effective theory, in which
the scale Λ acts as an explicit ultraviolet (UV) cutoff for the loop integrals.
Since, however, the scale Λ is arbitrary, the dependence on Λ coming from
such soft loops must cancel against the dependence on Λ of the parameters
in the effective action.

Fig. 4. One-loop tadpole diagram for the self-energy of the scalar field

Let us verify this cancellation explicitly in the case of the thermal mass
M of the scalar field, and to lowest order in perturbation theory. To this
order, the scalar self-energy is given by the tadpole diagram in Fig. 4. The
mass parameter M2(Λ) in the effective action is obtained by integrating over
hard momenta within the loop in Fig. 4:

M2(Λ) =
g2

2
T
∑

ν

∫
d3k

(2π)3
(1 − δν0) + θ(k − Λ)δν0

ω2
ν + k2

=
g2

2

∫
d3k

(2π)3

{
N(k)
k

+
1
2k

− θ(Λ− k)
T

k2

}
, (40)

where the θ-function in the second line has been generated by writing θ(k −
Λ) = 1 − θ(Λ − k). The first term, involving the thermal distribution, gives
the contribution

M̂2 ≡ g2

2

∫
d3k

(2π)3
N(k)
k

=
g2

24
T 2 . (41)

As it will turn out, this is the leading-order (LO) scalar thermal mass, and
also the simplest example of what will be called “hard thermal loops” (HTL).
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The second term, involving 1/2k, in (40) is quadratically UV divergent, but
independent of the temperature; the standard renormalization procedure at
T = 0 amounts to simply removing this term. The third term, involving the
θ-function, is easily evaluated. One finally gets:

M2(Λ) = M̂2 − g2

4π2 ΛT ≡ g2T 2

24

(
1 − 6

π2

Λ

T

)
. (42)

The Λ-dependent term above is subleading, by a factor Λ/T � 1.
The one-loop correction to the thermal mass within the effective theory

is given by the same diagram as in Fig. 4, but where the internal field is
static and soft, with the massive propagator 1/(k2 + M2(Λ)), and coupling
constant g2

3 ≈ g2T . Since the typical momenta in the integral will be k >∼ M ,
and M ∼ M̂ ∼ gT , we choose Λ � gT . We then obtain

δM2(Λ) =
g2

2

∫
d3k

(2π)3
Θ(Λ− k)

T

k2 +M2(Λ)

=
g2TΛ

4π2

(
1 − πM

2Λ
arctan

Λ

M

)
 g2TΛ

4π2 − g2

8π
M̂T , (43)

where the terms neglected in the last step are of higher order in M̂/Λ or
Λ/T .

As anticipated, the Λ-dependent terms cancel in the sum M2 ≡ M2(Λ)+
δM2(Λ), which then provides the physical thermal mass within the present
accuracy:

M2 = M2(Λ) + δM2(Λ) =
g2T 2

24
− g2

8π
M̂T . (44)

The LO term, of order g2T 2, is the HTL M̂ . The next-to-leading order (NLO)
term, which involves the resummation of the thermal mass M(Λ) in the soft
propagator, is of order g2M̂T ∼ g3T 2, and therefore non-analytic in g2. This
non-analyticity is related to the fact that the integrand in (43) cannot be
expanded in powers of M2/k2 without generating infrared divergences.

4 Effective Theories for the Quark-Gluon Plasma

We return now to the quark-gluon plasma and analyze the various scales and
degrees of freedom which are relevant in the weak coupling regime. We show
that there is a hierarchy of scales controlled by powers of the gauge coupling
g. We focus in this article on two particular momentum scales, the ‘hard’ one
which is that of the plasma particles with momenta k ∼ T , and the ‘soft’
one with k ∼ gT at which collective phenomena develop. We shall be in
particular interested in the effective theory obtained when the hard degrees
of freedom are ‘integrated out’. The resulting effective theory describes long
wave length, low frequency collective phenomena; that is, it accounts for
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time dependent fields, in contrast to the example discussed in the previous
section which concerned only static fields. As we shall see later, getting a
complete description of the dynamics of the collective excitations turns out
to be important also for the calculation of the equilibrium properties of the
quark-gluon plasma.

4.1 Scales and Degrees of Freedom in Ultrarelativistic Plasmas

A property of QCD which is essential in the present discussion is that of
asymptotic freedom, according to which the coupling constant depends on
the scale μ̄ as

αs(μ̄) ≡ g2

4π
∝ 1

ln(μ̄/ΛQCD)
. (45)

At high temperature, the natural scale is μ̄ = 2πT , so that the coupling
becomes weak when 2πT � ΛQCD. At extremely high temperature the in-
teractions become negligible and hadronic matter turns into an ideal gas of
quarks and gluons: this is the quark-gluon plasma. As we shall see an impor-
tant effect of the interactions is to turn free quarks and gluons into weakly
interacting quasiparticles.

In the absence of interactions, the plasma particles are distributed in mo-
mentum space according to the Bose-Einstein or Fermi-Dirac distributions:

Nk =
1

eβεk − 1
, nk =

1
eβεk + 1

, (46)

where εk = k ≡ |k| (massless particles), β ≡ 1/T , and chemical potentials
are assumed to vanish. In such a system, the particle density n is determined
by the temperature: n ∝ T 3. Accordingly, the mean interparticle distance
n−1/3 ∼ 1/T is of the same order as the thermal wave length λT = 1/k of
a typical particle in the thermal bath for which k ∼ T . Thus the particles
of an ultrarelativistic plasma are quantum degrees of freedom for which in
particular the Pauli principle can never be ignored.

In the weak coupling regime (g � 1), the interactions do not alter sig-
nificantly the picture. The hard degrees of freedom, i.e. the plasma particles,
remain the dominant degrees of freedom and since the coupling to gauge
fields occurs typically through covariant derivatives, Dx = ∂x + igA(x), the
effect of interactions on particle motion is a small perturbation unless the
fields are very large, i.e., unless A ∼ T/g, where g is the gauge coupling:
only then do we have ∂X ∼ T ∼ gA, where ∂X is a space-time gradient. We
should note here that we rely on considerations, based on the magnitude of
the gauge fields, which depend on the choice of a gauge. What is meant is
that there exists a large class of gauge choices for which they are valid. And
we shall verify a posteriori that within such a class, the final results are gauge
invariant.
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Considering now more generally the effects of the interactions, we note
that these depend both on the strength of the gauge fields and on the wave
length of the modes under study. A measure of the strength of the gauge
fields in typical situations is obtained from the magnitude of their thermal
fluctuations, that is Ā ≡ √〈A2(t,x)〉. In equilibrium 〈A2(t,x)〉 is independent
of t and x and given by 〈A2〉 = G(t = 0,x = 0) where G(t,x) is the gauge
field propagator. In the non-interacting case we have (with εk = k):

〈A2〉 =
∫

d3k

(2π)3
1

2εk
(1 + 2Nk). (47)

Here we shall use this formula also in the interacting case, assuming that the
effects of the interactions can be accounted for simply by a change of εk. We
shall also ignore the (divergent) contribution of the vacuum fluctuations (the
term independent of the temperature in (47)).

For the plasma particles εk = k ∼ T and 〈A2〉T ∼ T 2. The associated
electric (or magnetic) field fluctuations are 〈E2〉T ∼ 〈(∂A)2〉T ∼ k2〈A2〉T ∼
T 4 and are a dominant contribution to the plasma energy density. As already
mentioned, these short wave length, or hard, gauge field fluctuations produce
a small perturbation on the motion of a plasma particle. However, this is
not so for an excitation at the momentum scale k ∼ gT , since then the two
terms in the covariant derivative ∂X and gĀT become comparable. That is,
the properties of an excitation with momentum gT are expected to be non-
perturbatively renormalized by the hard thermal fluctuations. And indeed,
the scale gT is that at which collective phenomena develop. The emergence
of the Debye screening mass mD ∼ gT is one of the simplest examples of
such phenomena.

Let us now consider the fluctuations at this scale gT � T , to be re-
ferred to as the soft scale. These fluctuations can be accurately described by
classical fields. In fact the associated occupation numbers Nk are large, and
accordingly one can replace Nk by T/εk in (47). Introducing an upper cut-off
gT in the momentum integral, one then gets:

〈A2〉gT ∼
∫ gT

d3k
T

k2 ∼ gT 2. (48)

Thus ĀgT ∼ √
gT so that gĀgT ∼ g3/2T is still of higher order than the

kinetic term ∂X ∼ gT . In that sense the soft modes with k ∼ gT are still per-
turbative, i.e. their self-interactions can be ignored in a first approximation.
Note, however, that they generate contributions to physical observables which
are not analytic in g2, as shown by the example of the order g3 contribution
to the energy density of the plasma:

ε(3) ∼
∫ ωpl

0
d3k ωpl

1
eωpl/T − 1

∼ ω3
pl ωpl

T

ωpl
∼ g3T 4, (49)

where ωpl ∼ gT is the typical frequency of a collective mode.



Theory of the Quark-Gluon Plasma 131

Moving down to a lower momentum scale, one meets the contribution of
the unscreened magnetic fluctuations which play a dominant role for k ∼ g2T .
At that scale, to be referred to as the ultrasoft scale, it becomes necessary to
distinguish the electric and the magnetic sectors (which provide comparable
contributions at the scale gT ). The electric fluctuations are damped by the
Debye screening mass (ε2k = k2 + m2

D ≈ m2
D when k ∼ g2T ) and their

contribution is negligible, of order g4T 2. However, because of the absence of
static screening in the magnetic sector, we have here εk ∼ k and

〈A2〉g2T ∼ T

∫ g2T

0
d3k

1
k2 ∼ g2T 2, (50)

so that gĀg2T ∼ g2T is now of the same order as the ultrasoft derivative
∂X ∼ g2T : the fluctuations are no longer perturbative. This is the origin of
the breakdown of perturbation theory in high temperature QCD.

1 2 3 n. . . .

Fig. 5. Example of a multiloop diagram which is infrared divergent

To appreciate the difficulty from another perspective, let us first observe
that the dominant contribution to the fluctuations at scale g2T comes from
the zero Matsubara frequency:

〈A2〉g2T = T
∑

n

∫ g2T

0
d3k

1
ω2

n + k2 ∼ T

∫ g2T

0
d3k

1
k2 . (51)

Thus the fluctuations that we are discussing are those of a three dimensional
theory of static fields. Following Linde [23,24] consider then the higher order
corrections to the pressure in hot Yang-Mills theory. Because of the strong
static fluctuations most of the diagrams of perturbation theory are infrared
(IR) divergent. By power counting, the strongest IR divergences arise from
ladder diagrams, like the one depicted in Fig. 5, in which all the propaga-
tors are static, and the loop integrations are three-dimensional. Such n-loop
diagrams can be estimated as (μ is an IR cutoff):

g2(n−1)
(
T

∫
d3k

)n
k2(n−1)

(k2 + μ2)3(n−1) , (52)

which is of the order g6T 4 ln(T/μ) if n = 4 and of the order g6T 4
(
g2T/μ

)n−4

if n > 4. (The various factors in (52) arise, respectively, from the 2(n − 1)
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three-gluon vertices, the n loop integrations, and the 3(n− 1) propagators.)
According to this equation, if μ ∼ g2T , all the diagrams with n ≥ 4 loops
contribute to the same order, namely to O(g6). In other words, the correction
of O(g6) to the pressure cannot be computed in perturbation theory.

4.2 Effective Theory at Scale gT

Having identified the main scales and degrees of freedom, our task will be
to construct appropriate effective theories at the various scales, obtained by
eliminating the degrees of freedom at higher scales. We shall consider here
the effective theory at the scale gT obtained by eliminating the hard degrees
of freedom with momenta k ∼ T .

The soft excitations at the scale gT can be described in terms of average
fields [25,26]. Such average fields develop, for example, when the system is
exposed to an external perturbation, such as an external electromagnetic
current. In QED, we can summarize the effective theory for the soft modes
by the equations of motion:

∂μF
μν = jν

ind + jν
ext (53)

that is, Maxwell equations with a source term composed of the external per-
turbation jν

ext, and an extra contribution jν
ind which we shall refer to as the

induced current. The induced current is generated by the collective motion
of the charged particles, i.e. the hard degrees of freedom. It may be regarded
itself as a functional of the average gauge fields and, once this functional is
known, the equations above constitute a closed system of equations for the
soft fields.

The main problem is to calculate jind. This is done by considering the
dynamics of the hard particles in the background of the soft fields. For QED,
the induced current can be obtained using linear response theory. To be
more specific, consider as an example a system of charged particles on which
is acting a perturbation of the form

∫
dx jμ(x)Aμ(x), where jμ(x) is the

current operator and Aμ(x) some applied gauge potential. Linear response
theory leads to the following relation for the induced current:

jind
μ =

∫
d4y ΠR

μν(x− y)Aν(y),

ΠR
μν(x− y) = −iθ(x0 − y0)〈[jμ(x), jν(y)]〉eq., (54)

where the (retarded) response function ΠR
μν(x− y) is also referred to as the

polarization operator. Note that in (54), the expectation value is taken in
the equilibrium state. Thus, within linear response, the task of calculating
the basic ingredients of the effective theory for soft modes reduces to that of
calculating appropriate equilibrium correlation functions.

In fact we shall need the response function only in the weak coupling
regime, and for particular kinematic conditions which allow for important
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simplifications. In leading order in weak coupling, the polarization tensor is
given by the one-loop approximation. In the kinematic regime of interest,
where the incoming momentum is soft while the loop momentum is hard, we
can write Π(ω, p) = g2T 2f(ω/p, p/T ) with f a dimensionless function, and
in leading order in p/T ∼ g, Π is of the form g2T 2f(ω/p). This particular
contribution of the one-loop polarization tensor is an example of what has
been called a “hard thermal loop” [27,28,29,30,31,32,25,26]; for photons in
QED, this is the only one. It turns out that this hard thermal loop can
be obtained from simple kinetic theory, and the corresponding calculation is
done in the next subsection.

In non-Abelian theory, linear response is not sufficient: constraints due to
gauge symmetry force us to take into account specific non-linear effects and
a more complicated formalism needs to be worked out. Still, simple kinetic
equations can be obtained in this case also, but in contrast to QED, the
resulting induced current is a non linear functional of the gauge fields. As a
result, it generates an infinite number of “hard thermal loops”.

5 Kinetic Equations for the Plasma Particles

The hard degrees of freedom enter the equations of motion (53) for the
soft collective excitations only through their average density or current, that
is, through the induced current. This induced current can be calculated by
studying the dynamics of the plasma particles in the background of soft exter-
nal gauge fields. This is what we now turn to. In order to keep the discussion
at an elementary level, we shall merely analyze the main steps involved in
the derivation of the corresponding QCD equations in the simpler context of
non-relativistic electromagnetic plasmas. The QCD equations are presented
at the end of this section.

5.1 One-Loop Polarization Tensor from Kinetic Theory

As indicated above, in the kinematic regime considered, the dominant contri-
bution to the one-loop polarization tensor can be obtained using elementary
kinetic theory, and we present now this calculation. We consider an electro-
magnetic plasma and momentarily assume that we can describe its charged
particles in terms of classical distribution functions fq(p, x) giving the den-
sity of particles of charge q (q = ±e) and momentum p at the space-time
point x = (t, r) [33]. We consider then the case where collisions among the
charged particles can be neglected and where the only relevant interactions
are those of particles with average electric (E) and magnetic (B) fields. Then
the distribution functions obey the following simple kinetic equation, known
as the Vlasov equation [33]:

∂fq

∂t
+ v

∂fq

∂r
+ F

∂fq

∂p
= 0, (55)
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where v = dεp/dp is the velocity of a particle with momentum p and energy
εp (for massless particles v = p̂), and F = q(E + v ∧ B) is the Lorentz force.
The average fields E and B depend themselves on the distribution functions
fq. Indeed, the induced current

jμ
ind(x) = e

∫
d3p

(2π)3
vμ (f+(p, x) − f−(p, x)) , (56)

where vμ ≡ (1,v), is the source term in the Maxwell equations (53) for the
mean fields.

When the plasma is in equilibrium, the distribution functions, denoted as
f0

q (p) ≡ f0(εp), are isotropic in momentum space and independent of space-
time coordinates; the induced current vanishes, and so do the average fields
E and B. When the plasma is weakly perturbed, the distribution functions
deviate slightly from their equilibrium values, and we can write: fq(p, x) =
f0(εp) + δfq(p, x). In the linear approximation, δf obeys

(v · ∂x)δfq(p, x) = −qv · Edf0

dεp
, (57)

where v · ∂x ≡ ∂t + v · ∇. The magnetic field does not contribute because of
the isotropy of the equilibrium distribution function.

It is convenient here to set

δfq(p, x) ≡ −qW (x,v)
df0

dεp
, (58)

thereby introducing a notation which will be useful later for the QCD case.
Since

fq(p, x) = f0(εp) − qW (x,v)
df0

dεp
 f0(εp − qW (x,v)), (59)

W (x,v) may be viewed as a local distortion of the momentum distribution
of the plasma particles. The equation for W is simply:

(v · ∂x)W (x,v) = v · E(x). (60)

Contrary to (55), the linearized equations (57) or (60) do not involve the
derivative of f with respect to p, and they can be solved by the method of
characteristics: v ·∂x is the time derivative of δf(p, x) along the characteristic
defined by dx/dt = v. Assuming then that the perturbation is introduced
adiabatically so that the fields and the fluctuations vanish as eηt0 (η → 0+)
when t0 → −∞, we obtain the retarded solution:

W (x,v) =
∫ t

−∞
dt′ v · E(x − v(t− t′), t′), (61)
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and the corresponding induced current:

jμ
ind(x) = −2e2

∫
d3p

(2π)3
vμ df0

dεp

∫ ∞

0
dτ v · E(x− vτ). (62)

Since E = −∇A0 − ∂A/∂t, the induced current is a linear functional of Aμ.
At this point we assume explicitly that the particles are massless. In this
case, v is a unit vector, and the angular integral over the direction of v
factorizes in (62). Then, using (54) as definition for the polarization tensor
Πμν(x− y), and the fact that the Fourier transform of

∫∞
0 dτ e−ητf(x− vτ)

is i f(Q)/(v · Q + iη), with Qμ = (ω,q) and f(Q) the Fourier transform of
f(x), one gets, after a simple calculation [34] :

Πμν(ω,q) = m2
D

{
−δμ0δν0 + ω

∫
dΩ
4π

vμvν

ω − v · q + iη

}
, (63)

where the angular integral
∫

dΩ runs over all the orientations of v, and mD

is the Debye screening mass

m2
D = −2e2

π2

∫ ∞

0
dp p2 df0

dεp
. (64)

It turns out that (63) is the dominant contribution at high temperature to
the one-loop polarization tensor in QED, provided one substitutes for f0 the
actual quantum equilibrium distribution function, that is, f0(εp) = np, with
np given in (46). After insertion in (64), this yields m2

D = e2T 2/3.
In the next subsection, we shall address the question of how simple kinetic

equations emerge in the description of systems of quantum particles, and
under which conditions such systems can be described by seemingly classical
distribution functions where both positions and momenta are simultaneously
specified.

We shall later find that the expression obtained for the polarization tensor
using simple kinetic theory generalizes to the non-Abelian case. This is so in
particular because the kinematic regime remains that of the linear Vlasov
equation, with straight line characteristics.

5.2 Kinetic Equations for Quantum Particles

In order to discuss in a simple setting how kinetic equations emerge in the
description of collective motions of quantum particles, we consider in this
subsection a system of non-relativistic fermions coupled to classical gauge
fields. Since we are dealing with a system of independent particles in an
external field, all the information on the quantum many-body state is encoded
in the one-body density matrix [9,10] :

ρ(r, r′, t) = 〈Ψ †(r′, t)Ψ(r, t)〉 , (65)
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where Ψ and Ψ † are the annihilation and creation operators, and the average
is over the initial equilibrium state. It is on this object that we shall later
implement the relevant kinematic approximations. To this aim, we introduce
the Wigner transform of ρ(r, r′, t) [35,36]:

f(p,R, t) =
∫

d3s e−ip·s ρ
(
R +

s
2
,R − s

2
, t
)
. (66)

The Wigner function has many properties that one expects of a classical phase
space distribution function as may be seen by calculating the expectation
values of simple one-body observables. For instance the average density of
particles n(R) is given by:

n(R, t) = ρ(R,R, t) =
∫

d3p

(2π)3
f(p,R, t). (67)

Similarly, the current operator: (1/2mi)
(
ψ†∇ψ − (∇ψ†)ψ

)
has for expecta-

tion value:

j(R, t) =
1

2mi
(∇y − ∇x) ρ(y,x, t)||y−x|→0 =

∫
d3p

(2π)3
p
m
f(p,R, t). (68)

These results are indeed those one would obtain in a classical description with
f(p,R, t) the probability density to find a particle with momentum p at point
R and time t. Note, however, that while f is real, due to the hermiticity of ρ,
it is not always positive as a truly classical distribution function would be. Of
course, f contains the same quantum information as ρ, and it does not make
sense to specify quantum mechanically both the position and the momentum.
However, f behaves as a classical distribution function in the calculation of
one-body observables for which the typical momenta p that are involved in
the integration are large in comparison with the scale 1/λ characterizing the
range of spatial variations of f , i.e. pλ � 1.

By using the equations of motion for the field operators, iΨ̇(r, t) = [H,Ψ ],
where H is the single-particle Hamiltonian, one obtains easily the following
equation of motion for the density matrix

i∂tρ = [H, ρ]. (69)

In fact we shall need the Wigner transform of this equation in cases where
the gradients with respect to R are small compared to the typical values of
p. Under such conditions, the equation of motion reduces to

∂

∂t
f + ∇p H · ∇R f − ∇R H · ∇p f = 0, (70)

where we have kept only the leading terms in an expansion in ∇R. For par-
ticles interacting with gauge potentials Aμ(X), the Wigner transform of the
single-particle Hamiltonian in (70) takes the form:

H(R,p, t) =
p2

2m
− e

m
A · p +

e2

m
A2(R, t) + eA0(R, t). (71)
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Assuming that the field is weak and neglecting the term in A2, one can write
(70) in the form:

∂tf + v · ∇Rf + e(E + v ∧ B) · ∇pf +
e

m
(pj∂jA

i)∇i
pf = 0, (72)

where we have set v = (p − eA)/m. This equation is almost the Vlasov
equation (55): it differs from it by the last term which is not gauge invariant.
The presence of such a term, and the related gauge dependence of the Wigner
function, obscure the physical interpretation. It is then convenient to define
a gauge invariant density matrix:

ρ́(r, r′, t) = 〈ψ†(r′, t)ψ(r, t)〉U(r, r′, t), (73)

where (s = r − r′)

U(r, r′) = exp
(

−ie
∫ r

r′
dz · A(z, t))

)
≈ exp (−ies · A(R)) , (74)

and the integral is along an arbitrary path going from r′ to r. Actually, in the
last step we have used an approximation which amounts to choose for this
path the straight line between r′ to r; furthermore, we have assumed that the
gauge potential does not vary significantly between r′ to r. (Typically, ρ(r, r′)
is peaked at s = 0 and drops to zero when s >∼ λT where λT is the thermal
wave length of the particles. What we assume is that over a distance of order
λT the gauge potential remains approximately constant.) Note that in the
calculation of the current, only the limit s → 0 is required, and that is given
correctly by (74) (see also (75) below). With the approximate expression (74)
the Wigner transform of (73) is simply f́(R,k) = f(R,k + eA). By making
the substitution f(R,p) = f́(R,p − eA) in (72), one verifies that the non-
covariant term cancels out and that the covariant Wigner function f́ obeys
indeed Vlasov’s equation.

In the presence of a gauge field, the previous definition (68) of the current
suffers from the lack of gauge covariance. It is, however, easy to construct a
gauge invariant expression for the current operator,

j =
1

2m

(
ψ†(

1
i
∇ − eA)ψ −

(
(
1
i
∇ + eA)ψ†

)
ψ

)
, (75)

whose expectation value in terms of the Wigner transforms reads:

j(R, t) =
∫

d3p

(2π)3

(
p − eA
m

)
f(R,p, t) =

∫
d3k

(2π)3

(
k
m

)
f́(R,k, t). (76)

The last expression involving the covariant Wigner function makes it clear
that j(R, t) is gauge invariant, as it should. The momentum variable of the
gauge covariant Wigner transform is often referred to as the kinetic momen-
tum. It is directly related to the velocity of the particles: k = mv = p − eA.
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As for p, the argument of the non-covariant Wigner function, it is related to
the gradient operator and is often referred to as the canonical momentum.

In order to understand the structure of the equations that we shall obtain
for the QCD plasma, it is finally instructive to consider the case where the
particles possess internal degrees of freedom (such spin, isospin, or colour).
The density matrix is then a matrix in internal space. As a specific example,
consider a system of spin 1/2 fermions. The Wigner distribution reads [37]:

f(p,R) = f0(p,R) + fa(p,R)σa, (77)

where the σa are the Pauli matrices, and the fa are three independent dis-
tributions which describe the excitations of the system in the various spin
channels; together they form a vector that we can interpret as a local spin
density, f = (1/2)Tr(fσ). When the system is in a magnetic field with Hamil-
tonian H = −μ0 σ ·B the equation of motion for f acquires a new component,
∂tf = 2μ0B ∧ f , which accounts for the spin precession in the magnetic field.
In the linear approximation this precession may be viewed as an extra time
dependence of the distribution function along the characteristics:

d
dt

=
∂

∂t
+ v · ∇R + 2μ0B ∧ . (78)

It is important to realize that all the differential operators above and in
the Vlasov equation apply to the arguments of distribution functions, and
not to the coordinates of the actual particles. Note, however, that equations
similar to the ones presented here can be obtained for classical spinning parti-
cles. When the angular momentum of such particles is large, it can indeed be
treated as a classical degree of freedom, and the corresponding equations of
motion have been written by Wong [38]. After replacing spin by colour, these
equations have been used by Heinz [39,40] in order to write down transport
equations for classical coloured particles. By implementing the relevant kine-
matic approximations one then recovers [41] the non-Abelian Vlasov equa-
tions to be derived below, i.e., (79) and (80). (See also [42,43] for related
work.)

5.3 QCD Kinetic Equations and Hard Thermal Loops

We are now ready to present the equations that are obtained for the QCD
plasma. These are equations for generalized one-body density matrices de-
scribing the long wave length collective motions of colour particles (quarks
and gluons), and possible excitations involving oscillations of fermionic de-
grees of freedom. They look formally as the Vlasov equation, the main ones
being [26,25]:

[v ·Dx, δn±(k, x)] = ∓ g v · E(x)
dnk

dk
, (79)

[v ·Dx, δN(k, x)] = − g v · E(x)
dNk

dk
, (80)
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(v ·Dx)/Λ(k, x) = −igCf (Nk + nk) /v Ψ(x). (81)

In these equations, vμ = (1,v), v = k/k, Ψ(x) is an average (relativistic)
fermionic field, and δn±, δN and /Λ are gauge-covariant Wigner functions
for the hard particles. The first two Wigner functions are those of the den-
sity matrices of the quarks and the gluons, respectively; the last one is that
of a more exotic density matrix which mixes boson and fermion degrees of
freedom, Λ ∼ 〈ψA〉. The right hand sides of the equations specify the quan-
tum numbers of the excitations that they are describing: gluon for the first
two, quark for the last one. One of the major difference between the QCD
equations above and the linear Vlasov equation for QED is the presence of
covariant derivatives in the left hand sides of the equations. These play a
role similar to that of the magnetic field in (78) for the distribution functions
of particles with spin. (Note that the equation for /Λ holds for QED, with a
covariant derivative there as well.)

The equations (79)–(81) have a number of interesting properties which
are reviewed in [1]. In particular, they are covariant under local gauge trans-
formations of the classical fields, and independent of the gauge-fixing in the
underlying quantum theory.

By solving these equations, one can express the induced sources as func-
tionals of the background fields. To be specific, consider the colour current:

jμ
a (x) ≡ 2g

∫
d3k

(2π)3
vμ Tr

(
T aδN(k, x)

)
, (82)

where δN is the gluon density matrix. Quite generally, the induced colour
current may be expanded in powers of Aμ, thus generating the one-particle
irreducible amplitudes of the gauge fields [26]:

ja
μ = Πab

μνA
ν
b +

1
2
Γ abc

μνρA
ν
bA

ρ
c + ... (83)

Here, Πab
μν = δabΠμν is the polarization tensor, and the other terms repre-

sent vertex corrections. These amplitudes are “hard thermal loops” (HTL)
[30,31,32,25,26] which define the effective theory for the soft fields at the scale
gT . It is worth noticing that the kinetic equations isolate directly these hard
thermal loops, in a gauge invariant manner, without further approximations.

The gluon density matrix can be parametrized as in (58)

δNab(k, x) = −gWab(x,v) (dNk/dk), (84)

where Nk ≡ 1/(eβk − 1) is the Bose-Einstein thermal distribution, and
W (x,v) ≡ Wa(x,v)T a is a colour matrix in the adjoint representation which
depends upon the velocity v = k/k (a unit vector), but not upon the mag-
nitude k = |k| of the momentum. Then the colour current takes the form:

jμ
ind(x) = m2

D

∫
dΩ
4π

vμW (x,v) (85)
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with m2
D ∼ g2T 2. A similar representation holds for the quark density matri-

ces δn±(k, x). The kinetic equations for δNab and δn± can then be written
as an equation for Wa(x,v):

(v ·Dx)abWb(x,v) = v · Ea(x). (86)

They differ from the corresponding Abelian equation (60) merely by the
replacement of the ordinary derivative ∂x ∼ gT by the covariant one Dx =
∂x + igA. Accordingly, the soft gluon polarization tensor derived from (85)–
(86), i.e., the “hard thermal loop” Πμν , is formally identical to the photon
polarization tensor obtained from (60) and given by (63) [27,28]. The reason
for the existence of an infinite number of hard thermal loops in QCD is the
presence of the covariant derivative in the left hand side of (86). A similar
observation can be made by writing the induced electromagnetic current in
the form:

jμ
ind(x) = m2

D

∫
dΩ
4π

vμ

∫
d4y 〈x| 1

v · ∂ |y〉v · E(y)

=
∫

d4y σμj(x, y)Ej(y). (87)

This expression, which is easily obtained from the expression (57) of δf ,
defines the conductivity tensor σμν . The generalization of this expression to
QCD amounts essentially to replacing the ordinary derivative by a covariant
one.

6 Collective Phenomena in the Quark-Gluon Plasma

At the classical level, the effective theory at the scale gT is summarized by
the generalized Yang-Mills equations

DνF
νμ = m̂2

D

∫
dΩ
4π

vμvi

v ·D Ei ≡ Π̂ab
μνA

ν
b +

1
2
Γ̂ abc

μνρA
ν
bA

ρ
c + ..., (88)

where the induced current in the right hand side describes the polarization
of the hard particles by the soft colour fields Aμ

a . In this equation, m̂D ∼ gT
is the Debye mass, Ei

a is the soft electric field, vμ ≡ (1, v), and the angular
integral

∫
dΩ runs over the orientations of the unit vector v. The induced

current is non-local and gauge symmetry, which forces the presence of the
covariant derivative Dμ = ∂μ + igAμ in the denominator of (88), makes it
also non-linear.

Similarly, the soft fermionic fields obey the following generalized Dirac
equation [26] (with M̂ ∼ gT and �v = γμv

μ) :

i �Dψ = M̂2
∫

dΩ
4π

�v
i(v ·D)

ψ ≡ Σ̂ψ + Γ̂ a
μA

μ
aψ + ... (89)
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These equations allow the description of a variety of collective phenomena.
We discuss briefly here some of them (collective modes, Debye screening and
Landau damping). More details can be found in the article by A. Rebhan in
this volume. See also [12,4].

6.1 Collective Modes

The collective plasma waves are propagating solutions to (88) or (89). We re-
strict ourselves in this subsection to the weak field limit where these equations
become linear and essentially Abelian.

The solutions can then be analyzed with the help of the propagator. We
consider here the gluon propagator ∗Gμν , in Coulomb’s gauge, where it has the
following non-trivial components, corresponding to longitudinal (or electric)
and transverse (or magnetic) degrees of freedom:

∗G00(ω,p) ≡ ∗ΔL(ω, p), ∗Gij(ω,p) ≡ (δij − p̂ip̂j)∗ΔT (ω, p), (90)

where:

∗ΔL(ω, p) =
−1

p2 +ΠL(ω, p)
, ∗ΔT (ω, p) =

−1
ω2 − p2 −ΠT (ω, p)

, (91)

and the electric (ΠL) and magnetic (ΠT ) polarization functions are defined
as:

ΠL(ω, p) ≡ −Π00(ω, p) , ΠT (ω, p) ≡ 1
2

(δij − p̂ip̂j)Πij(ω,p) . (92)

Explicit expressions for these functions can be found in [1].
The dispersion relations for the modes are obtained from the poles of the

propagators, that is,

p2 +ΠL(ωL, p) = 0, ω2
T = p2 +ΠT (ωT , p), (93)

for longitudinal and transverse excitations, respectively. The solutions to
these equations, ωL(p) and ωT (p), are displayed in Fig. 6.b. The longitudinal
mode is the analogue of the familiar plasma oscillation. It corresponds to a
collective oscillation of the hard particles, and disappears when p � gT . Both
dispersion relations are time-like (ωL,T (p) > p), and show a gap at zero mo-
mentum (the same for transverse and longitudinal modes since, when p → 0,
we recover isotropy). With increasing momentum, the transverse branch be-
comes that of a relativistic particle with an effective mass m∞ ≡ mD/

√
2

(commonly referred to as the “asymptotic mass”). Although, strictly speak-
ing, the HTL approximation does not apply at hard momenta, the above
dispersion relation ωT (p) remains nevertheless correct for p ∼ T where it
coincides with the light-cone limit of the full one-loop result [44] :

m2
∞ ≡ Π1−loop

T (ω2 = p2) =
m2

D

2
. (94)
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(a) (b)
Fig. 6. Dispersion relation for soft excitations in the linear regime: (a) soft fermions;
(b) soft gluons (or linear plasma waves), with the upper (lower) branch correspond-
ing to transverse (longitudinal) polarization

The dispersion relations of soft fermionic excitations exhibit also collective
feature with a characteristic splitting at low momenta (see Fig. 6.a). We shall
not discuss here this interesting phenomenon (see [4] and references therein).

We note finally that particular solutions of the non-linear equations (88)
have also been found, in [45,46,4]. These solutions describe non-linear plane
waves propagating through the plasma, and represent truly non-Abelian col-
lective excitations.

6.2 Debye Screening

The screening of a static chromoelectric field by the plasma constituents is
the natural non-Abelian generalization of the Debye screening, a familiar
phenomenon in classical plasma physics [33]. In coordinate space, screening
reduces the range of the gauge interactions. In momentum space, it con-
tributes to regulate the infrared behaviour of the various n-point functions.

Screening properties can be inferred from an analysis of the effective pho-
ton (or gluon) propagators (91) in the static limit ω → 0. We have:

ΠL(0, p) = m2
D , ΠT (0, p) = 0, (95)

and therefore:

∗ΔL(0, p) =
−1

p2 +m2
D

, ∗ΔT (0, p) =
1
p2 , (96)

which clearly shows that the Debye mass mD acts as an infrared cut-off ∼ gT
in the electric sector, while there is no such cut-off in the magnetic sector.
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6.3 Landau Damping

For time-dependent fields, there exists a different screening mechanism asso-
ciated to the energy transfer to the plasma constituents. In Abelian plasmas,
this mechanism is known as Landau damping [33]. The mechanical work done
by a long-wave-length electromagnetic field acting on the charged particles
leads to an energy transfer [33]:

d EW (t)
d t

=
∫

d3xE(t, x) · j(t, x), (97)

where ji(p) = Πiν
R (p)Aν(p) is the induced current. One can then show that

the average energy loss is related to the imaginary part of the retarded po-
larization tensor. From (63) we get:

ImΠμν
R (ω,p) = −πm2

D ω

∫
dΩ
4π

vμvν δ(ω − v · p) . (98)

The δ-function in (98) shows that the particles which absorb energy are those
moving in phase with the field (i.e., the particles whose velocity component
along p is equal to the field phase velocity: v · p̂ = ω/p). Since in ultrarela-
tivistic plasmas v is a unit vector, only space-like (|ω| < p) fields are damped
in this way.

To see how this mechanism leads to screening, consider the effective pho-
ton (or gluon) propagator (91), and focus on the magnetic propagator. For
small but non-vanishing frequencies the corresponding polarization function
ΠT (ω, p) is dominated by its imaginary part:

ΠT (ω � p) = −i π
4
m2

D

ω

p
+ O(ω2/p2) , (99)

and therefore
∗ΔT (ω � p)  1

p2 − i (πω/4p)m2
D

. (100)

Thus ImΠT (p) acts as a frequency-dependent IR cutoff at momenta p ∼
(ωm2

D)1/3. That is, as long as the frequency ω is different from zero, the soft
momenta are dynamically screened by Landau damping [47].

7 The Entropy of the Quark-Gluon Plasma

We come now to the last part of this article which will be mainly devoted
to an introduction to the recent progress made in the calculation of the
entropy of the quark-gluon plasma. We first comment on various aspects of
perturbation theory and show that it is not appropriate for calculating the
thermodynamics of the quark-gluon plasma, even at high temperature where
the coupling is weak. The main source of difficulties is that the contributions
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of the collective modes, for which we have constructed an effective theory
in the previous sections, are non-perturbative and cannot be expanded in
powers of the coupling constant. We then show that these contributions can
be included by using self-consistent approximations familiar in many-body
physics. These are best formulated for the entropy of the plasma, for which
we obtain a simple approximation which provides an accurate description of
lattice gauge calculations.

7.1 Results from Perturbation Theory

The free energy has been calculated up to order g5, including the contribution
of fermions [48]. However, since our purpose here is mostly pedagogical, we
shall limit our discussion to the gluon contribution at order g4, in an SU(N)
gauge theory. The pressure P = −F/V can then be written:

P = P0
[
1 + a2g

2 + a3g
3 + (a4(μ/T ) + a′

4 ln g) g4 +O(g5)
]
, (101)

with

a2 = −5

(√
N

4π

)2

, a3 =
80√

3

(√
N

4π

)3

, a′
4 = 240

(√
N

4π

)4

ln
√
N

2π
√

3

a4 = −5

(√
N

4π

)4 [
22
3

ln
μ

4πT
+

38
3
ζ ′(−3)
ζ(−3)

− 148
3

ζ ′(−1)
ζ(−1)

− 4γE +
64
5

]
,

(102)

where ζ is Riemann’s zeta function, and μ the renormalization scale.
The first term in the expansion is P0, the pressure of an ideal gas of

gluons:

P0 = (N2 − 1) T 4π
2

45
. (103)

The next term, of order g2, is a genuine perturbative correction, and so is the
term of order g4. The contributions of order g3 can be interpreted as a contri-
bution of the collective modes to the pressure, and the odd power reflects the
fact that the calculation of this contribution requires resummations. Similar
resummations are responsible for the term in g4 ln g.

We note that some of the coefficients in (102) depend on the renormaliza-
tion scale μ. However, the pressure itself should not depend on μ. It obeys a
renormalization group equation:[

μ2 ∂

∂μ2 +
(
μ2 dα

dμ2

)
∂

∂α

]
P = 0. (104)

In this equation, α(μ) ≡ g2(μ)/4π is the running coupling constant which
satisfies the equation:

μ2 dα
dμ2 = β(α) = −β2α

2 − β3α
3, (105)
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with

β2 =
11N
12π

, β3 =
17N2

24π2 . (106)

One can then show that, indeed, P is independent of μ: the explicit μ de-
pendence of the coefficients cancels with that of the running coupling. Look
indeed at the following combination of terms coming from the contributions
of a2g

2 and the μ dependent part of a4g
4:

N

4π

{
α+

N

4π
α2 22

3
ln

μ

4πT

}
. (107)

By taking the derivative of this expression with respect to μ2 one gets:

μ2 d
dμ2 {} = μ2 dα

dμ2 +
N

4π
α2 11

3
+ higher order terms. (108)

By using the leading order expression of the β-function given in (105), one
then obtains, as announced:

− 11
12π

N α2 +
N

4π
α2 11

3
= 0. (109)

Note, however, that the pressure is only formally independent of μ at
order g4, in the sense that its derivative with respect to μ involves terms of
order g5 at least. But the approximate expression (101) for P does depend
on μ. As in all perturbative calculations, one is then led to look for the best
value of μ, i.e. the one which minimizes the higher order corrections. In the
present context, a “natural choice” is to fix μ = 2πT , where 2πT is the scale
provided by the basic Matsubara frequency. This choice makes the running
coupling decrease with increasing temperature, and leads in particular to the
expectation that the quark-gluon plasma becomes perturbative at very large
temperature.

By calculating explicitly the various coefficients in (102) for N = 3, one
can write (101) thus:

P = P0
[
1 − 0.095g2 + 0.12g3+(

0.09 ln g − 0.007 − 0.013 ln
( μ

2πT

))
g4 +O(g5)

]
. (110)

Then, if for example one fixes μ = 2πT and chooses a large temperature such
that α(2πT ) = 0.1, one gets g = 1.12, and

P = P0 [1 − 0.12 + 0.17 + 0.004] , (111)

which shows no sign of convergence, with the term of order g3 larger than the
term of order g2. Furthermore, if one analyzes the dependence of P on the
renormalization scale, on finds large variations as μ runs within the interval
πT < μ < 4πT .
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Attempts have been made to extract information from the first terms of
this series using Padé approximants [53,54] or Borel summation techniques
[55,56]. The resulting expression of the pressure becomes indeed a smooth
function of the coupling, better behaved than the polynomial approximation
(101). These techniques, however, which are in some situations very powerful,
provide little physical insight, and we shall not discuss them further here.

The behavior of perturbation theory does not improve as one takes into
account the higher order terms that one can calculate (namely orders g4

and g5). Furthermore, at order g6, as we have already mentioned, perturba-
tion theory becomes inapplicable because of infrared divergences. It has been
shown in [49,50,51] how, in principle, an effective theory could be constructed
to overcome this particular problem by marrying analytical techniques (to de-
termine the coefficients of the effective theory) and numerical ones (to solve
the non-perturbative 3-dimensional effective theory). The resulting effective
theory is a 3-dimensional theory of static fields, with Lagrangian:

Leff =
1
4
(F a

ij)
2 +

1
2
(DiA

a
0)2 +

1
2
m2

D(Aa
0)2 + λ(Aa

0)4 + δL, (112)

withDi = ∂i−ig
√
TAi. This strategy has been applied recently to the calcula-

tion of the free energy of the quark-gluon plasma a high temperature [52]. The
slow convergence of the pressure towards the ideal gas value that is seen in
lattice calculations above Tc, is well reproduced. It is worth-emphasizing that
this technique of dimensional reduction puts a special weight on the static
sector (it singles out the contributions of the zero Matsubara frequency).
However, as we shall see, it may be advantageous to keep, even in the calcu-
lation of equilibrium thermodynamic properties, the full spectral information
that one has about the plasma excitations.

There are indeed indications that lattice data are well accounted for by
simple phenomenological models of weakly interacting quasiparticles [57,58].
In the case of the scalar field, the dominant effect of the interactions is to give
a mass to the excitations. And indeed a perturbative expansion in terms of
screened propagators (that is keeping the screening mass ∼ gT as a param-
eter, not considered as a term of order g entering the expansion) has been
shown to be quite stable with good convergence properties [59]. In the case
of gauge theory, the effect of the interactions is more complicated than just
generating a mass. But we know how to determine the dominant corrections
to the self-energies. When the momenta are soft, these are given by the hard
thermal loops discussed above. By adding these corrections to the tree level
Lagrangian, and subtracting them from the interaction part, one generated
the so-called hard thermal loop perturbation theory [60]. The resulting per-
turbative expansion is made complicated, however, by the non-local nature
of the hard thermal loop action, and by the necessity of introducing tempera-
ture dependent counter terms. At the expense of some extra formalism, some
of these difficulties can be avoided. This is discussed now.
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7.2 Skeleton Expansion for Thermodynamic Potential
and Entropy

In this section we recall the formalism of propagator renormalization that al-
lows systematic rearrangements of the perturbative expansion while avoiding
double-counting. We shall see in particular how self-consistent approxima-
tions can be used to obtain a simple expression for the entropy which isolates
the contribution of the elementary excitations as a leading contribution. For
pedagogical purposes, we shall mainly consider in these lectures the example
of the scalar field.

The thermodynamic potential Ω = −PV of the scalar field can be written
as the following functional of the full propagator D [61,62]:

βΩ[D] = − logZ =
1
2

Tr logD−1 − 1
2

Tr ΠD + Φ[D] , (113)

where Tr denotes the trace in configuration space, β = 1/T , Π is the self-
energy related to D by Dyson’s equation (D0 denotes the bare propagator):

D−1 = D−1
0 +Π, (114)

and Φ[D] is the sum of the 2-particle-irreducible “skeleton” diagrams

− Φ[D] = 1/12 +1/8 +1/48 +... (115)

The essential property of the functional Ω[D] is to be stationary under
variations of D (at fixed D0) around the physical propagator. The physical
pressure is then obtained as the value of Ω[D] at its extremum. The station-
arity condition,

δΩ[D]/δD = 0, (116)

implies the following relation

δΦ[D]/δD =
1
2
Π, (117)

which, together with (114), defines the physical propagator and self-energy
in a self-consistent way. The equation (117) expresses the fact that the skele-
ton diagrams contributing to Π are obtained by opening up one line of a
two-particle-irreducible skeleton. Note that while the diagrams of the bare
perturbation theory, i.e., those involving bare propagators, are counted once
and only once in the expression of Π given above, the diagrams of bare per-
turbation theory contributing to the thermodynamic potential are counted
several times in Φ. The extra terms in (113) precisely correct for this double-
counting.

Self-consistent (or variational) approximations, i.e., approximations which
preserve the stationarity property (116), are obtained by selecting a class of
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skeletons in Φ[D] and calculating Π from (117). Such approximations are
commonly called “Φ-derivable” [62].

The traces over configuration space in (113) involve integration over imag-
inary time and over spatial coordinates. Alternatively, these can be turned
into summations over Matsubara frequencies and integrations over spatial
momenta: ∫ β

0
dτ
∫

d3x → βV

∫
[dk], (118)

where V is the spatial volume, kμ = (iωn,k) and ωn = nπT , with n even
(odd) for bosonic (fermionic) fields (the fermions will be discussed later). We
have introduced a condensed notation for the measure of the loop integrals
(i.e., the sum over the Matsubara frequencies ωn and the integral over the
spatial momentum k): ∫

[dk] ≡ T
∑

n,even

∫
d3k

(2π)3
. (119)

Strictly speaking, the sum-integrals in equations like (113) contain ultraviolet
divergences, which requires regularization (e.g., by dimensional continuation).
Since, however, most of the forthcoming calculations will be free of ultraviolet
problems, we do not need to specify here the UV regulator (see, however,
Sect. 7.3 for explicit calculations).

For the purpose of developing approximations for the entropy it is con-
venient to perform the summations over the Matsubara frequencies. One ob-
tains then integrals over real frequencies involving discontinuities of propaga-
tors or self-energies which have a direct physical significance. Using standard
contour integration techniques, one gets:

Ω/V =
∫

d4k

(2π)4
n(ω)

(
Im log(−ω2 + k2 + Π) − ImΠD

)
+ TΦ[D]/V,

(120)

where n(ω) = 1/(eβω − 1).
The analytic propagator D(ω, k) can be expressed in terms of the spectral

function

D(ω, k) =
∫ ∞

−∞

dk0

2π
ρ(k0, k)
k0 − ω

, (121)

and we define, for ω real,

ImD(ω, k) ≡ ImD(ω + iε, k) =
ρ(ω, k)

2
. (122)

The imaginary parts of other quantities are defined similarly.
We are now in the position to calculate the entropy density:

S = −∂(Ω/V )/∂T . (123)
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The thermodynamic potential, as given by (120) depends on the tempera-
ture through the statistical factors n(ω) and the spectral function ρ, which
is determined entirely by the self-energy. Because of (116) the temperature
derivative of the spectral density in the dressed propagator cancels out in the
entropy density and one obtains [63,64]:

S = −
∫

d4k

(2π)4
∂n(ω)
∂T

Im log D−1(ω, k)

+
∫

d4k

(2π)4
∂n(ω)
∂T

ImΠ(ω, k)ReD(ω, k) + S ′ (124)

with

S ′ ≡ −∂(TΦ)
∂T

∣∣∣
D

+
∫

d4k

(2π)4
∂n(ω)
∂T

ReΠ ImD. (125)

For the two-loop skeletons, we have:

S ′ = 0. (126)

Loosely speaking, the first two terms in (124) represent essentially the entropy
of “independent quasiparticles”, while S ′ accounts for a residual interaction
among these quasiparticles [64].

The vanishing of S ′ holds whether the propagator are the self-consistent
propagators or not. That is, only the relation (117) is used in the proof
which does not require D to satisfy the self-consistent Dyson equation (114).
A general analysis of the contributions to S ′ and their physical interpretation
can be found in [65].

We emphasize now a few attractive features of the formula (124) with
S ′ = 0, which makes the entropy a privileged quantity to study the thermo-
dynamics of ultrarelativistic plasmas. We note first that the formula for S
at 2-loop order involves the self-energy only at 1-loop order. Besides this im-
portant simplification, this formula for S, in contrast to the pressure, has the
advantage of manifest ultra-violet finiteness, since ∂n/∂T vanishes exponen-
tially for both ω → ±∞. Also, any multiplicative renormalization D → ZD,
Π → Z−1Π with real Z drops out from (124). Finally, the entropy has a more
direct quasiparticle interpretation than the pressure. This will be illustrated
explicitly in the simple model of the next subsection.

7.3 A Simple Model

In this section we shall present the self-consistent solution for the (λ/4!)φ4

theory, keeping in Φ only the two-loop skeleton. Anticipating the fact that
the fully dressed propagator will be that of a massive particle, we write the
spectral function as ρ(k0,k) = 2π ε(k0) δ(k2

0 − k2 −m2), and consider m as a
variational parameter. The thermodynamic potential (113), or equivalently
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the pressure, becomes then a simple function of m. By Dyson’s equation, the
self-energy is simply Π = m2. We set:

I(m) ≡ 1
2

∫
[dk]D(k) =

1
2

∫
[dk]

1
ω2

n + k2 +m2 . (127)

Then the pressure P = −Ω/V can be written as:

− P =
1
2

∫
d3k

(2π)3
εk +

1
β

∫
d3k

(2π)3
log(1 − e−βεk) −m2I(m) +

λ0

2
I2(m),

(128)

where ε2k ≡ k2 + m2. By demanding that P be stationary with respect to
m one obtains the self-consistency condition which takes here the form of a
“gap equation”:

m2 = λ0 I(m). (129)

The pressure in the two-loop Φ-derivable approximation, as given by (127)–
(129), is formally the same as the pressure per scalar degree of freedom
in the (massless) N -component model with the interaction term written as

3
N+2 (λ/4!)(φiφi)2 in the limit N → ∞ [66]. From the experience with this lat-
ter model, we know that (127)–(129) admit an exact, renormalizable solution
which we recall now.

At this stage, we need to specify some properties of the loop integral
I(m) which we can write as the sum of a vacuum piece I0(m) and a finite
temperature piece IT (m) such that, at fixed m, IT (m) → 0 as T → 0. We
use dimensional regularization to control the ultraviolet divergences present
in I0, which implies I0(0) = 0. Explicitly one has:

μεI(m) = − m2

32π2

(
2
ε

+ log
μ̄2

m2 + 1
)

+ IT (m) + O(ε), (130)

with

IT (m) =
∫

d3k

(2π)3
n(εk)
2εk

, (131)

and εk ≡ (k2 + m2)1/2. In (130), μ is the scale of dimensional regulariza-
tion, introduced, as usual, by rewriting the bare coupling λ0 as μελ̂0, with
dimensionless λ̂0; furthermore, ε = 4 − n, with n the number of space-time
dimensions, and μ̄2 = 4πe−γμ2.

We use the modified minimal subtraction scheme (MS) and define a di-
mensionless renormalized coupling λ by:

1
λ

=
1

λ0μ−ε
+

1
16π2ε

. (132)

When expressed in terms of the renormalized coupling, the gap equation
becomes free of ultraviolet divergences. It reads:

m2 =
λ

2

∫
d3k

(2π)3
n(εk)
εk

+
λm2

32π2

(
log

m2

μ̄2 − 1
)
. (133)
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The renormalized coupling constant satisfies

dλ
d log μ̄

=
λ2

16π2 , (134)

which ensures that the solution m2 of (133) is independent of μ̄. The expres-
sion (134) coincides with the exact β-function in the large-N limit, but gives
only one third of the lowest-order perturbative β-function for N = 1. This
is no actual fault since the running of the coupling affects the thermody-
namic potential only at order λ2 which is beyond the perturbative accuracy
of the 2-loop Φ-derivable approximation. In order to see the correct one-loop
β-function at finite N , the approximation for Φ would have to be pushed to
3-loop order.

Note also that, in the present approximation, the renormalization (132) of
the coupling constant is sufficient to make the pressure (128) finite. Indeed,
in dimensional regularization the sum of the zero point energies εk/2 in (128)
reads:

με

∫
dn−1k

(2π)n−1

εk

2
= − m4

64π2

(
2
ε

+ log
μ̄2

m2 +
3
2

)
+ O(ε), (135)

so that

με

∫
dn−1k

(2π)n−1

εk

2
− Π2

2λ̂0
= − m4

2λ
− m4

64π2

(
log

μ̄2

m2 +
3
2

)
+ O(ε) (136)

is indeed UV finite as n → 4. After also using the gap equation (133), one
obtains the μ̄-independent result

P = −T
∫

d3k

(2π)3
log(1 − e−βεk) +

m2

2
IT (m) +

m4

128π2 . (137)

We now compute the entropy according to (124). Since ImΠ = 0 and
ReΠ = m2, we have simply:

S = −
∫

d4k

(2π)4
∂n(ω)
∂T

Im log(k2 − ω2 + m2). (138)

Using
Im log(k2 − ω2 + m2) = −πε(ω)θ(ω2 − ε2k), (139)

and the identity,

∂n(ω)
∂T

= − ∂σ(ω)
∂ω

, σ(ω) ≡ −n log n+ (1 + n) log(1 + n), (140)

one can rewrite (138) in the form (with nk ≡ n(εk)):

S =
∫

d3k

(2π)3
{

(1 + nk) log(1 + nk) − nk log nk

}
. (141)
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This formula shows that, in the present approximation, the entropy of the
interacting scalar gas is formally identical to the entropy of an ideal gas of
massive bosons, with mass m.

It is instructive to observe that such a simple interpretation does not hold
for the pressure. The pressure of an ideal gas of massive bosons is given by:

P (0)(m) =
∫

d3k

(2π)3

∫ ∞

εk

dω
(
n(ω) +

1
2

)
= −

∫
d3k

(2π)3
{
T log(1 − e−εk/T ) +

εk
2

}
, (142)

which differs indeed from (128) by the term m4/λ which corrects for the
double-counting of the interactions included in the thermal mass.

7.4 Comparison with Thermal Perturbation Theory

In view of the subsequent application to QCD, where a fully self-consistent de-
termination of the gluonic self-energy seems prohibitively difficult, we shall be
led to consider approximations to the gap equation. These will be constructed
such that they reproduce (but eventually transcend) the perturbative results
up to and including order λ3/2 or g3, which is the maximum perturbative
accuracy allowed by the approximation S ′ = 0.

In view of this it is important to understand the perturbative content of
the self-consistent approximations for m2, P and S. In this section we shall
demonstrate that, when expanded in powers of the coupling constant, these
approximations reproduce the correct perturbative results up to order λ3/2

[11]. This will also elucidate how perturbation theory gets reorganized by the
use of the skeleton representation together with the stationarity principle.

For the scalar theory with only (λ/4!)φ4 self-interactions, we write1 λ ≡
24g2, and compute the corresponding self-energy Π = m2 by solving the
gap equation (133) in an expansion in powers of g, up to order g3. Since we
anticipate m to be of order gT , we can ignore the second term ∝ λm2 ∼ g4 in
the r.h.s. of (133), and perform a high-temperature expansion of the integral
IT (m) in the first term (cf. (131)) up to terms linear in m. This gives the
following, approximate, gap equation:

m2  g2T 2 − 3
π
g2Tm . (143)

The first term in the r.h.s. arises as

24g2IT (0) = 12g2
∫

d3k

(2π)3
n(k)
k

= g2T 2 ≡ m̂2. (144)

1 This normalization for g is chosen in view of the subsequent extension to QCD
since it makes the scalar thermal mass in (144) equal to the leading-order Debye
mass in pure-glue QCD.
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This is also the leading-order result for m2, commonly dubbed the “hard
thermal loop”.

The second term, linear in m, in (143) comes from

12g2
∫

d3k

(2π)3

(
n(εk)
εk

− n(k)
k

)


(145)

12g2T

∫
d3k

(2π)3

(
1

k2 +m2 − 1
k2

)
= −3g2

π
mT , (146)

where we have used the fact that the momentum integral is saturated by soft
momenta k ∼ gT , so that to the order of interest n(εk)  T/εk (and similarly
n(k)  T/k). This provides the next-to-leading order (NLO) correction to the
thermal mass

δm2 ≡ −3g2

π
m̂T = − 3

π
g3T 2 . (147)

Thus, to order g3, one has m2 = m̂2 + δm2. In standard perturbation
theory [11,12], the first term arises as the one-loop tadpole diagram evaluated
with a bare massless propagator, while the second term comes from the same
diagram where the internal line is soft and dressed by the HTL, that is
D̂(ω, k) ≡ −1/(ω2 − k2 − m̂2).

Consider similarly the perturbative estimates for the pressure and entropy,
as obtained by evaluating (128) and (141) with the perturbative self-energy
Π = m2  m̂2 + δm2, and further expanding in powers of g, to order g3. The
renormalized version of (128) yields, to this order (recall that m ∼ gT and
λ ∼ g2),

P  π2T 4

90
− m2T 2

24
+
m3T

12π
+ · · · +

m4

2λ
. (148)

The first terms before the dots represent the pressure of massive bosons,
i.e. (142) expanded up to third order in powers of m/T . From (148), it can
be easily verified that the above perturbative solution for m2 ensures the
stationarity of P up to order g3, as it should. Indeed, if we denote

P2(m) ≡ −m2T 2

24
+

m4

2λ
, P3(m) ≡ m3T

12π
, (149)

then the following identities hold:

∂P2

∂m

∣∣∣∣
m̂

= 0,
∂P2

∂m

∣∣∣∣
m̂+δm

+
∂P3

∂m

∣∣∣∣
m̂

= 0. (150)

This shows that the NLO mass correction δm2 ∼ g3T 2 can be also obtained
as

δm2 = − (∂P3/∂m)
(∂2P2/∂m2)

∣∣∣∣
m̂

= −3g
π
m̂2 , (151)
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in agreement with (147). Moreover, P2 ≡ P2(m̂) = −g2T 2/48 and P3 ≡
P3(m̂) = m̂3T/12π are indeed the correct perturbative corrections to the
pressure, to orders g2 and g3, respectively [11]. In fact, the pressure to this
order can be written as:

P =
π2T 4

90
− m̂2T 2

24
(1 − 3

π
g) +

m̂3T

12π
+ · · · +

m̂4

2λ
(1 − 3

π
g)2 + O(g4)

=
π2T 4

90
− m̂2

48
T 2 +

m̂3T

12π
. (152)

Note that the term of order g2 is only half of that one would obtain from (142)
by replacing m by m̂. This is due to the mismatch between (142) and the
correct expression (128) for the pressure. In fact the net order g2 contribution
to the pressure comes from Φ evaluated with bare propagators: the order g2

contributions in the other two terms mutually cancel indeed. This is to be
expected: there is a single diagram of order g2; this is a skeleton diagram,
counted therefore once and only once in Φ. Observe also that the terms of
order g3 originating from the terms m̂2 and m̂4 mutually cancel; that is, the
NLO mass correction δm drops out from the pressure up to order g3. This is
no accident: the cancellation results from the stationarity of P at order g2,
the first equation (150).

Consider now the entropy density. The correct perturbative result up
to order g3 may be obtained directly by taking the total derivative of the
pressure, (152) with respect to T . One then obtains:

S =
4
T

(
π2T 4

90
− m̂2T 2

48
+
m̂3T

12π

)
+ O(g4). (153)

We wish, however, to proceed differently, using (141), or equivalently,
since ∂P/∂m = 0 when m is a solution of the gap equation, by writing:

S =
∂P

∂T

∣∣∣∣
m

. (154)

This yields:

S =
4
T

(
π2T 4

90
− m2T 2

48
+
m3T

48π

)
+ O(m4/T ), (155)

which coincides as expected with the expression obtained by expanding the
entropy (141) of massive bosons, up to order (m/T )3. If we now replace m
by its leading order value m̂, the resulting approximation for S reproduces
the perturbative effect of order ∼ g2, but it underestimates the correction of
order g3 by a factor of 4. This is corrected by changing m to m̂ + δm with
δm = −3gm̂/2π in the second order term of (155). Note that although it
makes no difference to enforce the gap equation to order g3 in the pressure
(because of the cancellation discussed above), there is no such cancellation
in the entropy.
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7.5 Approximately Self-consistent Solutions

As we have seen, the 2-loop Φ-derivable approximation provides an expression
for the entropy S as a functional of the self-energyΠ which has a simple quasi-
particle interpretation and is manifestly ultraviolet finite for any (finite) Π.
These attractive features of the formula (124) are independent of the specific
form of the self-energy, and will be shown to hold in QCD as well. Of course,
within this approximation, the self-energy is uniquely specified: by the sta-
tionarity principle, this is given by the self-consistent solution to the one-loop
gap equation. In the scalar φ4-model, it was easy to give the exact solution
to this equation. In QCD, however, it will turn out that a fully self-consistent
solution is both prohibitively difficult (because of the non-locality of the gap
equation), and not really desirable (because gauge symmetry implies rela-
tions between the renormalization of the propagators and that of the vertices,
and the present approximation deals only with propagator renormalization).
This leads us to consider approximately self-consistent resummations, which
are obtained in two steps: (a) An approximation is constructed for the solu-
tion Π to the gap equation, and (b) the entropy (124) is evaluated exactly
(i.e., numerically) with this approximate self-energy. While step (b) above is
unambiguous and inherently non-perturbative, step (a), on the other hand,
will be constrained primarily by the requirement of preserving the maximum
possible perturbative accuracy, of order g3. In addition to that, we shall add
the qualitative requirement that the approximation for Π, and the ensuing
one for S, are well defined and physically meaningful for all the values of g
of interest, and not only for small g—that is, for all the values of g where
the fully self-consistent calculation makes sense a priori. Finally, in the case
of QCD, relaxing the requirement of complete self-consistency allows us to
construct gauge invariant approximations.

(a) (b) (c) (d)

Fig. 7. QCD skeletons contributing to Φ at 2-loop order. Wiggly, plain and dotted
lines refer, respectively, to gluons, quarks, and ghosts

We shall now, in the rest of this article, outline the main steps that are
involved in the implementation of these approximations in the case of QCD.
Details can be found in the original publications [13,14,15].

At 2-loop order, the relevant skeletons are displayed in Fig. 7. By itself,
the corresponding self-consistent truncation is not a gauge invariant approx-
imation. Our strategy then will be to use gauge-invariant approximations
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to self-energies, in place of the self-consistent ones. These self-energies are
then used to compute the entropy without further approximations. In com-
plete analogy with the example of the scalar case that we have discussed in
the previous section, these approximations are such that, when expanded in
powers of the coupling the entropy is identical to that given by perturbation
theory up to and including order g3.

δΠb
l δΠb

tδΠa
l δΠa

t

δΣl δΣt

Fig. 8. Next to leading order contribution to δΠT (top) and to δΣ (bottom) at hard
momentum. Thick dashed and wiggly lines with a blob represent HTL-resummed
longitudinal and transverse propagators, respectively

The approximate self-energies that we use are the hard thermal loops
discussed above. Namely, for soft momenta ω, p ∼ gT , we take Πsoft ≈
ΠHTL and Σsoft ≈ ΣHTL, for gluons and quarks, respectively. We shall also
need an approximation valid for ω, p ∼ T : Πhard(ω2 ∼ p2) and similarly for
Σ. It turns out that this is accurately given by the hard thermal loop, even
though the momenta are not soft [44]. All these approximations are gauge
invariant. The corresponding diagrams are displayed in Figs. 8.

We can then proceed exactly as in the scalar case. As a first approximation
one may simply use the hard thermal loops Π = ΠHTL and Σ ∼ ΣHTL

at all momenta; we refer to the corresponding entropy as S = SHTL. The
perturbative content of this approximation is schematically O(g2) + 1

4 O(g3);
that is, the approximation fully accounts of the order g2, but reproduces only
a quarter of the g3 order, exactly as in the scalar case. In the next-to-leading
approximation, we correct the hard degrees of freedom by their interaction
with the soft modes. That is, we continue to use the hard thermal loops at
small momenta, but use at hard momenta the corrections corresponding to
the diagrams displayed in Fig. 8. The resulting approximation to the entropy,
S = SNLA accounts then fully for the orders g2 and g3. But, of course, these
expressions are not limited to values of the coupling as small as required for
the validity of perturbation theory.

7.6 Some Results for QCD

As an illustration of the quality of the results that are obtained within that
scheme, we show in Fig. 9 the entropy of pure SU(3) gauge theory. The bands
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delimiting the various lines in this figure correspond to varying the MS renor-
malization scale μ̄, which defines the renormalized coupling constant g(μ̄),
from μ̄ = πT to 4πT . One sees that in contrast to ordinary perturbation the-
ory, going from one level of approximation to the next one is indeed a small
correction. In particular, the effects of the soft modes are here a small con-
tribution. This is to be contrasted with perturbation theory where the order
g3 contribution is large for moderate values of the coupling. The comparison
with the lattice data [67] is quite good down to T >∼ 2.5Tc.

1.5 2 2.5 3 3.5 4 4.5 5

0.6
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0.9

1

����

�����

Fig. 9. The entropy of pure SU(3) gauge theory normalized to the ideal gas entropy
S0. Full lines: SHTL. Dashed-dotted lines: SNLA. 2-loop β-function → the running
coupling constant αs(μ̄). The MS renormalization scale: μ̄ = πT · · · 4πT . The dark
grey band: lattice result by Boyd et al. [67]

The quality of the agreement between the self-consistent approximation
and the lattice data supports the quasiparticle picture of the quark-gluon
plasma: the dominant effect of the interactions at high temperature seems
to be to change the bare quarks and gluons into massive quasiparticles, with
small residual interactions between the quasiparticles. It should be empha-
sized that, in contrast to the approximations based on dimensional reduction,
the method makes full use of the spectral information on the quasiparticles
contained in particular in the hard thermal loops.

The approach is easily extended to finite chemical potential, and the cal-
culation of the baryonic density can be done using approximations similar to
those we used for the entropy. Furthermore, from the knowledge of N(μ, T )
and S(μ, T ) one can reconstruct P (μ, T ), using lattice data to fix the inte-
gration constant (e.g. P (μ = 0, T )). Such investigations are under way.
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Thermal Gauge Field Theories
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1 Overview

The theoretical framework for describing ultrarelativistically hot and dense
matter is quantum field theory at finite temperature and density. At suf-
ficiently high temperatures and densities, asymptotic freedom should make
it possible to describe even the fundamental theory of strong interactions,
quantum chromodynamics (QCD), through analytical and mostly perturba-
tive means. This article tries to cover both principal issues related to gauge
freedom as well as specific problems of thermal perturbation theory in non-
Abelian gauge theories.

After a brief review of the imaginary- and real-time formalisms of thermal
field theory, the latter is extended to gauge theories. Aspects of different treat-
ments of Faddeev-Popov ghosts and different gauge choices are discussed for
general non-Abelian gauge theories, both in the context of path integrals and
in covariant operator quantization. The dependence of the formalism on the
gauge-fixing parameters introduced in perturbation theory is investigated in
detail. Only the partition function and expectation values of gauge-invariant
observables are entirely gauge independent. Beyond those it is shown that
the location of singularities of gauge and matter propagators, which define
screening behaviour and dispersion laws of the corresponding quasi-particle
excitations, are gauge independent when calculated systematically.

At soft momentum scales it turns out to be necessary to reorganize per-
turbation theory such that (at least) the contribution of the so-called hard
thermal (dense) loops (HTL/HDL) is resummed. The latter form a gauge-
invariant effective action, and their gauge-fixing independence is verified. The
existing results of such resummations on the modification of the spectrum of
HTL quasi-particles at next-to-leading order (NLO) are reviewed, and a few
cases discussed in more detail, with special attention given to gauge depen-
dence questions.

It is shown how screening and damping phenomena become logarithmi-
cally sensitive to the strictly nonperturbative physics of the chromomagneto-
static sector, with the exception of the case of zero 3-momentum. In particular
the definition of a non-Abelian Debye mass is discussed at length, also with
respect to recent lattice results.

Real parts of the dispersion laws of quasiparticle excitations, on the other
hand, are infrared-safe at NLO. However, as the additional collective modes
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of longitudinal plasmons and fermionic “plasminos” approach the light-cone,
collinear singularities arise, signalling a qualitative change of the dispersion
laws and requiring additional resummations. At high momenta only the reg-
ular modes of the fermions and the spatially transverse ones of the gauge
bosons remain and they tend to asymptotic mass hyperboloids. The NLO
corrections to the asymptotic thermal masses play an interesting role in a
self-consistent reformulation of thermodynamics in terms of weakly interact-
ing quasi-particles. In this application, the problem of poor convergence of
resummed thermal perturbation theory resurfaces, but it is shown that it
may be overcome through approximately self-consistent gap equations.

2 Basic Formulae

Before coming to quantum field theories and gauge theories in particular,
let us begin by recalling some relevant formulae from quantum statistical
mechanics.

We shall always consider the grand canonical ensemble, in which a sys-
tem in equilibrium can exchange energy as well as particles with a reser-
voir such that only mean values of energy and other conserved quantities
(baryon/lepton number, charge, etc.) are prescribed through Lagrange mul-
tipliers β = 1/T and αi = −βμi, respectively, where T is temperature and μi

are the various chemical potentials associated with a set of commuting con-
served observables N̂i = N̂†

i satisfying [N̂i, N̂j ] = 0 and [Ĥ, N̂i] = 0, where
Ĥ is the Hamiltonian.

The statistical density matrix is given by

"̂ = Z−1 exp
[
−αiN̂i − βĤ

]
≡ Z−1 exp

[
−β(Ĥ − μiN̂i︸ ︷︷ ︸

=: H̄

)
]
, (1)

where Z is the partition function

Z = Z(V, T, μi) = Tr e−βH̄ , (2)

and the thermal expectation value (ensemble average) of an operator Â is
given by

〈Â〉 = Tr["̂Â] . (3)

When total energy and particle numbers are extensive quantities1, i.e.
proportional to the volume V , one also has lnZ ∝ V , and since we shall be
interested in the limit V → ∞, it is preferable to define intensive quantities.
The most important one is the thermodynamic pressure

P =
1
βV

lnZ, (4)

1 A notable exception occurs when general relativity has to be included.
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which up to a sign is identical to the free energy density F/V = −P (F is
also referred to as the thermodynamic potential Ω).

Other thermodynamic (or should one say thermo-static?) quantities can
be derived from P , such as particle/charge densities

ni =
1
V

〈N̂i〉 =
∂P

∂μi
, (5)

energy density

ε = E/V =
1
V

〈Ĥ〉 = − 1
V

∂ lnZ
∂β

= −∂(βP )
∂β

(6)

(at fixed αi), and entropy density (which will play a prominent role at the
very end of this article)

s = S/V =
1
V

〈− ln "̂〉 =
1
V

lnZ +
β

V
〈Ĥ − μiN̂i〉

=
∂P

∂T
= β(P + ε− μini). (7)

In the latter equations one recognizes the familiar Gibbs-Duhem relation

E = −PV + TS + μiNi, (8)

which explains why P was defined as the (thermodynamic) pressure. A pri-
ori, the hydrodynamic pressure, which is defined through the spatial compo-
nents of the energy-momentum tensor through 1

3 〈T ii〉, is a separate object. In
equilibrium, it can be identified with the thermodynamic one through scal-
ing arguments [92], which, however, do not allow for the possibility of scale
(or “trace”) anomalies that occur in all quantum field theories with non-zero
β-function (such as QCD). In [51] it has been shown recently that the very
presence of the trace anomaly can be used to prove the equivalence of the
two in equilibrium.

All the above relations continue to hold in (special) relativistic situations,
namely within the particular inertial frame in which the heat bath is at
rest. In other inertial frames one has the additional quantity of heat-bath
4-velocity uμ, and one can generalize the above formulae by replacing V =∫
d3x → ∫

Σ⊥u

dΣμu
μ, and the operators in (1) by

H →
∫
dΣμT

μνuν , Ni →
∫
dΣμj

μ
i . (9)

αi and β are Lorentz scalars (i.e., temperature is by definition measured in
the rest frame of the heat bath). The partition function can then be written
in covariant fashion as [69]

Z = Tr
[
exp

∫
dΣμ

(
−T̂μνβν − ĵμ

i αi

)]
, (10)
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where we have introduced an inverse-temperature 4-vector βμ ≡ βuμ.
However, in what follows we shall most of the time remain in the rest

frame of the heat bath where uμ = δμ
0 .

3 Complex Time Paths

With a complete set of states given by the eigenstates of an operator ϕ̂,
ϕ̂|ϕ〉 = ϕ|ϕ〉, we formally write

Z = Tr
[
e−βĤ

]
=
∑
ϕ

〈ϕ|e−βĤ |ϕ〉. (11)

In field theory, we shall boldly use the field operator ϕ̂ = ϕ̂(t,x) in the
Heisenberg picture and write |ϕ〉 for its eigenstates at a particular time.

Using that the transition amplitude 〈ϕ1|e−iĤ(t1−t0)|ϕ0〉 [the overlap of
states that have eigenvalue ϕ0(x) at time t0 with states that have eigenvalue
ϕ1(x) at time t1] has the path integral representation

〈ϕ1|e−iĤ(t1−t0)|ϕ0〉

= N
∫

ϕ(t0,x)=ϕ0
ϕ(t1,x)=ϕ1

Dϕ exp i
∫ t1

t0

dt

∫
d3xL(ϕ, ∂ϕ) (12)

we can give a path integral representation for Z that takes care of the density
operator by setting t1 = t0 − iβ, and of the trace by integrating over all
configurations with ϕ1 = ϕ0.

When there is a chemical potential μ �= 0, we have Ĥ → H̄ = Ĥ − μN̂
and this implies L → L + μN if there are no time derivatives in N , and we
have

Z = N
∫

Dϕ exp i
∫ t0−iβ

t0

dt

∫
d3x L̄, (13)

where the path integral is over all configurations periodic in imaginary time,
ϕ(t0,x) = ϕ(t0 − iβ,x).

In this formula, real time has apparently been fixed to t0 and replaced
by an imaginary time flow which is periodic with period β, the inverse tem-
perature. In equilibrium thermodynamics, this seems only fitting as nothing
depends on time in strict equilibrium.

However, we have not really required time to have a fixed real part. We
have made the end point complex with the same real part, but the integration
over t in (13) need not be a straight line with fixed t0. Instead we shall consider
a general complex time path, and this allows us to define Green functions by
the path integral formula

〈Tcϕ̂1 · · · ϕ̂n〉 = N
∫

Dϕϕ1 · · ·ϕn exp i
∫
C
dt

∫
d3x L̄, (14)
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where Tc now means contour ordering along the complex time path C from
t0 to t0 − iβ such that ti ∈ C, and t1 � t2 � · · · � tn with respect to a
monotonically increasing contour parameter.

Through quantities like (14) we are not restricted to time-independent,
thermo-static questions, but may also consider small perturbations of the
equilibrium (response theory).

The time path introduced in (14) is in fact not completely arbitrary.
Considering spectral representations in the energy representation leads to
the conclusion [92] that C has to be such that the imaginary part of t is
monotonically decreasing. This is a necessary condition for analyticity; in
the limiting case of a constant imaginary part along (parts of) the contour,
distributional quantities (generalized functions) arise.

Except for the periodic boundary conditions with regard to the end points
of C (which become anti-periodic for fermionic field operators and Grassmann-
valued “classical” fields), the path integral formula (14) is formally identical
to the familiar one from T = 0 and μ = 0.

Indeed, perturbation theory is set up in the usual fashion. Using the
interaction-picture representation one can derive

〈TcO1 · · · On〉 =
Z0

Z
〈TcO1 · · · On ei

∫
C LI 〉0, (15)

where LI is the interaction part of L, and the correlators on the right-hand-
side can be evaluated by a Wick(-Bloch-DeDominicis) theorem:

〈Tcei
∫
C d4x jϕ〉0 = exp{−1

2

∫
C

∫
C
d4x d4x′j(x)Dc(x− x′)j(x′)}, (16)

where Dc is the 2-point function and this is the only building block of Feyn-
man graphs with an explicit T and μ dependence. It satisfies the KMS (Kubo-
Martin-Schwinger) condition

Dc(t− iβ) = ±e−μβDc(t), (17)

stating that eiμtD(t) is periodic (antiperiodic) for bosons (fermions).

3.1 Imaginary-Time (Matsubara) Formalism

The simplest possibility for choosing the complex time path is the straight line
from t0 to t0 − iβ, which is named after Matsubara [97] who first formulated
perturbation theory based on this contour. It is also referred to as imaginary-
time formalism (ITF), because for t0 = 0 one is exclusively dealing with
imaginary times.

Because of the (quasi-)periodicity (17), the propagator is given by a
Fourier series

Dc(t) =
1

−iβ

∑
ν

D̃(zν)e−izνt, D̃(zν) =
∫ −iβ

0
dtDc(t)eizνt (18)
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with discrete complex (Matsubara) frequencies

zν = 2πiν/β + μ, ν ∈
{

Z bos.
Z − 1

2 ferm. (19)

The transition to Fourier space turns the integrands of Feynman diagrams
from convolutions to products as usually, with the difference that there is no
longer an integral but a discrete sum over the frequencies, and compared to
standard momentum-space Feynman rules one has∫

d4k

i(2π)4
→ β−1

∑
ν

∫
d3k

i(2π)3
, i(2π)4δ4(k) → β(2π)3δν,0δ

3(k). (20)

However, all Green functions that one can calculate in this formalism are
initially defined only for times on C, so all time arguments have the same real
part. The analytic continuation to different times on the real axis is, however,
frequently a highly non-trivial task [92], so that it can be advantageous to
use a formalism that supports real time arguments from the start.

3.2 Real-Time (Schwinger-Keldysh) Formalism

In the so-called real-time formalisms, the complex time path C is chosen such
as to include the real-time axis from an initial time t0 to a final time tf . Since
we have to end up at t0 − iβ, this requires a further part of the contour to
run backward in real time [118,19] and to finally pick up the imaginary time
−iβ. There are a couple of paths C that have been proposed in the literature.
The oldest one due to Keldysh [78] is shown in Fig. 1, and this is also (again)
the most popular one.

�
�

Re t

Im t

−∞ ← t0 tf → +∞

t0 − iβ

C1

C2

C3

��

�

Fig. 1. Complex time path in the Schwinger-Keldysh real-time formalism

Clearly, if none of the field operators in (14) has a time argument on C1
or C2, the contributions from these parts of the contour simply cancel and
one is back to the ITF.

On the other hand, if t0 → −∞, and all operators have finite real time
arguments, the contribution from contour C3 decouples because from the
spectral representation one has for instance for the propagator connecting
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contour C1 and C3

D13(k, t− (t0 − iλ)) =

∞∫
−∞

dω e−iω(t−t0) σeλω

eβω̄ − 1
"(k, ω) t0→−∞−→ 0 (21)

for λ ∈ (0, β) by Riemann-Lebesgue [92].2

With only C1 and C2 contributing, the action in the path integral decom-
poses according to∫

C1∪ C2

L(ϕ) =
∫ ∞

−∞
dtL(ϕ(1)) −

∫ ∞

−∞
dtL(ϕ(2), (22)

where we have to distinguish between fields of type 1 (those from contour C1)
and of type 2 (those from contour C2) because of the prescription of contour
ordering in (14).3 From (22) it follows that type-1 fields have vertices only
among themselves, and the same holds true for the type-2 fields. However,
the two types of fields are coupled through the propagator, which is a 2 × 2
matrix with non-vanishing off-diagonal elements:

Dc(t, t′) =
( 〈Tϕ(t)ϕ(t′)〉 σ〈ϕ(t′)ϕ(t)〉

〈ϕ(t)ϕ(t′)〉 〈T̃ϕ(t)ϕ(t′)〉
)
. (23)

Here T̃ denotes anti-timeordering for the 2-2 propagator and σ is a sign which
is positive for bosons and negative for fermions. The off-diagonal elements do
not need a time-ordering symbol because type-2 is by definition always later
(on the contour) than type-1.

In particular, for a massive scalar field one obtains

Dc(k) =
( i

k2+m2+iε 2πδ−(k2 −m2)
2πδ+(k2 −m2) −i

k2+m2−iε

)
+2πδ(k2 −m2)

1
eβ|k0| − 1

(
1 1
1 1

)
, (24)

where δ±(k2−m2) = θ(±k0)δ(k2−m2). The specifically thermal contribution
is that of the second line. Mathematically, it is a homogeneous Green function,
as it should be, because it is proportional to δ(k2 −m2). Physically, this part
corresponds to Bose-Einstein-distributed, real particles on mass-shell.
2 There are cases where this line of reasoning breaks down. The decoupling of

the vertical part of the contour in RTF does, however, take place provided the
statistical distribution function in the free RTF propagator defined below in
(24) does have as its argument |k0| and not the seemingly equivalent

√
k2 + m2

[104,62].
3 Type-2 fields are sometimes called “thermal ghosts”, which misleadingly suggests

that type-1 fields are physical and type-2 fields unphysical. In fact, they differ
only with respect to the time-ordering prescriptions they give rise to.
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The matrix propagator (24) can also be written in a diagonalized form
[98,99]

Dc(k) = M(k0)
(
iGF 0
0 −iG∗

F

)
M(k0) (25)

with GF ≡ 1/(k2 +m2 + iε) and

M(k0) =
1√

eβ|k0| − 1

(
e

1
2 β|k0| e− 1

2 βk0

e
1
2 βk0 e

1
2 β|k0|

)
. (26)

In the T → 0 limit one has

M(k0)
β→∞−→ M0(k0) =

(
1 θ(−k0)

θ(k0) 1

)
(27)

so that one still has propagators connecting fields of different type. However,
if all the external lines of a diagram are of the same type, then also all the
internal lines are, because

∏
i θ(k

0
(i)) = 0 when

∑
i k

0
(i) = 0 and any connected

region of the other field-type leads to a factor of zero.

4 Gauge Theories – Feynman Rules

As a simple application of the formalism developed above and as a demon-
stration of the need for more formalism for gauge theories, let us try to
calculate the thermodynamic pressure of photons in the imaginary-time for-
malism and in a covariant gauge. (There is no need for the real-time formal-
ism here, because we are not considering Green functions external lines.)
The simplest gauge to perform calculations is usually Feynman’s gauge,
which simplifies the Lagrangian of the electromagnetic fields according to
L = − 1

4FμνF
μν → 1

2Aν�Aν .
One would therefore expect the partition function to be given by∫

periodic
DA exp i

−iβ∫
0

dt d3xL = const.×(det�)− 1
2 ×4

periodic,

and the thermal pressure would be calculated from

lnZ = −4 × 1
2
Tr ln� + const

= −4 × 1
2
V
∑

n

∫
d3k

(2π)3
ln
(
ω2

n + k2)+ const

= 4V
∫

d3k

(2π)3

[
−βk

2
− ln(1 − e−βk)

]
+ const

as

P (T ) − P (0) =
1
βV

lnZ = 4T
∫

d3k

(2π)3
ln(1 − e−βk)−1 = 2 × π2T 4

45

giving twice the correct result of Planck for black-body radiation.
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The error we made is that we have not calculated Tre−βH̄ in a physical
Hilbert space (in fact in no Hilbert space at all, because there are negative-
norm states). Instead of only two physical (transverse) degrees of freedom,
we have added up the contributions from four. The standard way to get rid
of the unphysical degrees of freedom is to cancel their contribution by ghost
contributions, which evidently are required already in the Abelian case.

4.1 Path Integral – Faddeev-Popov Trick

Because of gauge invariance under δAa
μ = Dab

μ (A)ωb (where a, b are possible
color indices), there is a redundancy in the path integral that leads to zero
modes in the kinetic kernels, making them non-invertible. Thus, in order to
be able to write down propagators and do perturbation theory, one needs
to remove this redundancy. Using a suitable gauge fixing function F a[A](x),
this can be done by inserting

∏
a,x

δ (F a[A](x)) · det
∂F a

∂ωb
(28)

into the measure of the path integral, selecting only one gauge field configu-
ration per gauge orbit.

One can equally well use F a[A](x)−ζa(x) in place of F a[A](x) with arbi-
trary functions ζa and perform a Gaussian average∫

Dζ e
i

2α ζ2
. . .

over the latter. This gives so-called general or inhomogeneous gauge breaking
terms

L → L +
1
2α

F a[A]2 (29)

with a gauge fixing parameter α.
In covariant gauges F a[A](x) = ∂μAa

μ(x) and Abelian electromagnetism,
where a takes only one value and Dab

μ (A) → ∂μ, the determinant in (28) is

det
∂F

∂ω
= det� = (det�)+

1
2 ×2,

so this indeed compensates for the two unphysical degrees of freedom in the
above miscalculation of black-body radiation.

Usually, this “Faddeev-Popov determinant” does not play a role in QED
because it is field independent. For calculating thermodynamic potentials, it
does, because this determinant depends on temperature through the bound-
ary conditions.
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In non-Abelian gauge theories, det ∂F a

∂ωb = det
(

∂F a

∂Ab
μ
Dbc

μ (A)
)

is field de-

pendent, and it is convenient to introduce anticommuting and real4 Faddeev-
Popov ghost fields∫

DcDc̄ exp i
∫

C
c̄a
∂F a

∂Ab
μ

Dbc
μ (A)cc = const. × det

(
∂F a

∂Ab
μ

Dbc
μ (A)

)
. (30)

The correct boundary conditions are clearly those of the gauge potentials
and thus are periodic in imaginary time despite the fact that the ghosts are
anti-commuting and thus behave like fermions with regard to combinatorial
factors in front of Feynman diagrams [20].

4.2 Covariant Operator Quantization

While the path integral makes it evident how to treat ghosts at finite tem-
perature, one can arrive at the same conclusion without recourse to path
integrals in covariant (BRS) operator quantization [86,87], where at first it is
somewhat surprising that anticommuting fields should end up having periodic
rather than antiperiodic boundary conditions in imaginary time.

BRS quantization is preferably done with Lagrange multiplier fields B
and a gauge-fixed Lagrangian (in general covariant gauges)

L = Linv −Aa
μ∂

μBa +
α

2
BaBa − i(∂μc̄a)Dμc (31)

with c and c̄ being anticommuting field operators.
The gauge-fixed Lagrangian possesses a global fermionic (BRS) symmetry,

which in any gauge reads

[iQBRS, Aμ] = Dμc, {iQBRS, c} = − g
2c× c,

[iQBRS, B] = 0, {iQBRS, c̄} = iB,
(32)

where we used a vectorial notation to write for instance Dμc = (∂μ+gAμ×)c.
In covariant gauges for instance this is generated by

QBRS =
∫
d3x

[
B ·D0c− c · ∂0B +

ig
2

(∂0c̄) · (c× c)
]
. (33)

The BRS operator is nilpotent, Q2
BRS = 0 and commutes with Lagrangian

and Hamiltonian, [iQBRS,L] = 0 = [iQBRS,H].
There is one further global symmetry, ghost number, with conserved

charge

Nc =
∫
d3x [∂0c̄ · c− c̄ ·D0c] (34)

4 c̄ is not the conjugate of c, but an independent field.
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satisfying

[Nc, c] = c, [Nc, c̄] = −c̄, [Nc, Aμ] = 0, [Nc, B] = 0. (35)

Nc is anti-Hermitian, Nc = −N†
c , although it has real eigenvalues ngh,

which is possible because our arena is a non-Hilbert space V containing
negative-norm states.

The negative-norm states can be eliminated by the linear condition

V → Vphys : QBRS|phys〉 = 0, (36)

and the true physical Hilbert space is finally obtained by modding out zero-
norm states,

Hphys = Vphys/V0 . (37)

The corresponding projection operator P in Hphys = PV can be shown
[86,87] to have a complement that is “BRS exact”, meaning

P + {QBRS,R} = 1, (38)

but the actual construction of these operators is rather complicated.
However, we apparently need them to be able to define the trace restricted

to the physical Hilbert space that appears in Z = Tr
∣∣
Hphys

e−βH = TrP e−βH

or in expectation values of observables.

Hata-Kugo Trick. There is however an elegant trick that avoids the explicit
construction of P [66]: From [Nc, QBRS] = QBRS it follows that Nn

c QBRS =
QBRS(Nc +1)n and therefore eiπNcQBRS = QBRSeiπ(Nc+1) = −QBRSeiπNc , so

{eiπNc , QBRS} = 0. (39)

This, together with Nc|ψ〉 = 0 for |ψ〉 ∈ Hphys can be used to write

Z = TrP e−βH = TrP eiπNce−βH

= Tr eiπNce−βH − Tr {QBRS,R} eiπNce−βH︸ ︷︷ ︸
TrR{eiπNc , QBRS}︸ ︷︷ ︸

0

e−βH

(40)

since [QBRS, H] = 0.
So the comparatively simple operator eiπNc can be used in place of the

complicated P to express Z, and similarly thermal expectation values of
gauge-invariant observables O, through a trace in unrestricted V containing
ghosts and other unphysical degrees of freedom,

Z = Tr
[
eiπNce−βH

]
, 〈O〉 = Z−1Tr

[
eiπNce−βHO] . (41)
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This result shows that the anticommuting ghosts, which naturally are sub-
ject to antiperiodic boundary conditions, acquire a purely imaginary chemical
potential

μc = iπ/β. (42)

In the ITF, the Matsubara frequencies of the ghosts are therefore

zν = 2πi(n− 1
2
)/β + μc = 2πin/β, n ∈ Z (43)

like those of ordinary bosons. Thus, while they do have fermionic combina-
torics in Wick contractions and the like, thermodynamically they behave like
bosons.

In the RTF, where the matrix-valued propagator (24) can be written as

−iD =
(
GF 0
0 −G∗

F

)
+ (GF −G∗

F ) ×

×σ
(
θ(k̄0)n(k̄0) + θ(−k̄0)n(−k̄0) sgn(k̄0)n(k̄0)

sgn(k̄0)(σ + n(k̄0)) θ(k̄0)n(k̄0) + θ(−k̄0)n(−k̄0)

)
(44)

with σ = ± for bosons/fermions, n(x) = 1
eβx−σ

, and k̄0 = k0 − μ, we have
σ = − for the Faddeev-Popov ghosts, but

nFD(k0 − iπ/β) =
1

eβk0−iπ + 1
= −nBE(k0), (45)

so the imaginary chemical potential (42) in effect negates σ and replaces
Fermi-Dirac by Bose-Einstein statistics.

Only the signs arising in Wick contractions are those of fermions, which
shows that the Faddeev-Popov ghost propagators have indeed the right form
to be able to compensate for unphysical degrees of freedom contained in
the gauge boson propagator, which naturally has σ = + and Bose-Einstein
statistical factors.

Compared to (44), the gauge boson propagator also has a factor Gμν =
(−gμν +(1−α)kμkν

k2 ) in covariant gauges. We shall also consider other gauges
in what follows, which can be characterized by

gμν → Gμν = gμν − kμf̃ν + f̃μkν

f̃ · k + (f̃2 − αk2)
kμkν

(f̃ · k)2 , (46)

where f̃ is the momentum-space version of f in F a[A] = fμAa
μ.

Popular gauge choices besides the familiar covariant gauges include axial
gauges (F a = nμAa

μ, nμ const.) and Coulomb gauge(s) (F a = ∂iAa
i ).

In axial gauges, ghosts decouple completely, because the Faddeev-Popov
determinant det(n·∂) is field- and temperature-independent, however they are
fraught with technical difficulties, already at zero temperature. The particu-
larly attractive “temporal” gauge nμ = δμ

0 , which does not cause additional
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breaking of Lorentz symmetry, is unfortunately inconsistent with periodic
boundary conditions. Relaxing those leads to rather complicated Feynman
rules in the ITF [71], while the RTF version seems more tractable [70], at
least it does not appear to be more problematic than at zero temperature.

Coulomb gauge is in fact widely used at finite temperature, because it also
does not lead to additional Lorentz symmetry breaking. However, it does have
less simple Slavnov-Taylor identities [48] because ghosts do not decouple,
although they frequently do not contribute, since their (RTF) propagator
does not contain statistical distribution functions.

4.3 Frozen Ghosts

In [90], alternative Feynman rules have been proposed that avoid thermalized
ghosts even in covariant gauges. In the RTF one can switch off the interactions
as t0 → −∞, and define the physical Hilbert space in terms of Abelianized
in-states. Without additional Lorentz symmetry breaking, physical in-states
can then be chosen as

|phys, in〉 = |Aphys.-quanta〉|0 w.r.t. Aunphys., B, c̄, c〉 (47)

with Aaμ
phys.(k) = Aμν(k)Aa

ν(k) and

A0μ = 0, Aij = −(δij − kikj

k2 ). (48)

The unphysical states correspond to

Aaμ
unphys.(k) = (gμν − Aμν(k))Aa

ν(k), Ba, c̄a, and ca.

The interaction-picture free Hamiltonian then separates into two com-
muting parts

H0I = Hphys
0I +Hunphys

0I , [Hphys
0I , Hunphys

0I ] = 0, (49)

and, because Hunphys
0I |phys, in〉 = 0, thermal averages factorize:∑

phys

〈phys, in|e−βH0I · · ·Aphys. · · ·Aunphys. · · · c̄ · · · c · · · |phys, in〉 =

∑
phys

〈Aphys.|e−βHphys.
0I · · ·Aphys. · · · |Aphys.〉〈0|· · ·Aunphys. · · · c̄ · · · c · · ·|0〉

with the thermal Wick theorem applying to the first factor under the latter
sum, and the T = 0 Wick theorem to the second one.

This leads to alternative Feynman rules for gauge theories in RTF in which
only the transverse projection of the gauge bosons have thermal (matrix)
propagators, and all other fields have only the T = 0 limits of those. The rest
of the Feynman rules is as usual in RTF.
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E.g., in Feynman gauge (α = 1) the gauge boson and ghost propagators
now read

Dμν = −iAμνM
(
GF 0
0 −G∗

F

)
M−i(gμν − Aμν)M0

(
GF 0
0 −G∗

F

)
M0

= −gμν

( i
k2+iε 2πδ−(k2)

2πδ+(k2) −i
k2−iε

)
−2πδ(k2)Aμνn(|k0|)

(
1 1
1 1

)
, (50)

Dgh =
( i

k2+iε 2πδ−(k2)
2πδ+(k2) −i

k2−iε

)
. (51)

In general linear gauges one has to replace gμν in the vacuum part according
to (46); the thermal part remains unchanged.

Using these Feynman rules simplifies certain calculations in covariant and
other gauges [90], because, although ghosts are present, they do not carry sta-
tistical distribution functions, but are “frozen”. On the other hand, the usual
cancellation of pinch singularities in the RTF (absence of “pathologies”),
turns out be more complicated, and occurs in general only upon Dyson re-
summations [91].

5 Gauge Dependence Identities

As we have seen, perturbation theory and its Feynman rules require the
introduction of gauge fixing terms. Clearly, physical results have to come
out independent of those. We shall therefore now study in detail to what
extent perturbative calculations will exhibit dependences on the gauge fixing
parameters by considering

F a[A] → F a[A] + δF a[A]. (52)

With δF a[A] ∝ F a[A], this also comprises a possible variation of the gauge
parameter α in (29) or (31).

5.1 Gauge Independence of the Partition Function

Path Integral. The introduction of the gauge fixing term together with
the Faddeev-Popov determinant according to (28) was done in a way that
picks one representative field configuration from each gauge orbit.5 So by
construction the partition function or averages of gauge-invariant operators
are independent of the gauge fixing terms.

5 At least perturbatively this is guaranteed by the existence of ∂F/∂ω; non-
perturbatively there may be obstructions to worry about.
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This can be checked explicitly by noting that the variation (52) of the
gauge fixing function can be written as

δF [A] =
∂F [A]
∂Aμ

Dμ[A]
[
∂F [A]
∂A

·D[A]
]−1

δF [A]︸ ︷︷ ︸
δ̃ξ[A]

. (53)

A corresponding change of the gauge breaking term 1
2α (F a)2 is thus equiv-

alent to a gauge transformation δ̃Aμ = Dμ[A]δ̃ξ with the above non-local,
field-dependent parameter δ̃ξ[A].

The invariant part of the action is, of course, invariant under A → A +
δ̃A, as are any gauge invariant operators that might have been inserted, so
it remains to check that the path integral measure DA together with the
Faddeev-Popov determinant is invariant, too. This can indeed be verified by
writing δ̃DA as tr∂δ̃A/∂A, and δ̃ det[∂F

∂A ·D] = det[∂F
∂A ·D]× δ̃(tr log[∂F

∂A ·D]) =
det[∂F

∂A ·D]×tr([∂F
∂A ·D]−1δ̃[∂F

∂A ·D]), and then using that gauge transformations
form a group [47,83].

Covariant Operator Formalism. In the covariant operator formalism the
Lagrangian in a general gauge F can be written as

L = Linv +B · F +
α

2
B ·B − c̄ · [QBRS, F ] (54)

and variations of F correspond to BRS transformations with parameter c̄·δF :

δL = B · δF − c̄ · [QBRS, δF ] = {QBRS, c̄ · δF}. (55)

It is always possible to construct an operator δG such that δH = {QBRS, δG}
(if no time derivatives are involved, one simply has δG = − ∫ d3x c̄ · δF ).

Gauge independence of the partition function and of thermal averages
of gauge invariant operators defined by (41) can be verified as follows [66]:
Variations of exponentiated operators can be expressed as

eA+δB − eA =

λ∫
0

dλ eλA δB e(1−λ)A +O(δ2) (56)

and using this one finds

δTr[e−βH+iπNcO] = −
∫ β

0
dλTr[e−λH{QBRS, δG}eλHe−βHeiπNcO]

= −
∫ β

0
dλTr[e−λH δG eλH {eiπNc , QBRS}︸ ︷︷ ︸

0

e−βHO] (57)

because of cyclic invariance of the trace and [QBRS,O] = 0 for a gauge-
invariant operator O.
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5.2 Gauge Dependence of Green Functions

Green functions, i.e. thermal averages of products of field operators like
〈Tc · · ·Aμ · · ·ψ · · · ψ̄ · · ·〉, are, however, gauge-variant objects, and will there-
fore in general depend on gauge fixing parameters.6

In particular, the propagators of gauge and matter fields will contain all
sorts of gauge parameter dependences. Yet, they are among the prime objects
of linear response theory as they are used to derive the properties of quasi-
particles.

Historically, a stimulating failure was the attempt to extract the damp-
ing constant of long-wavelength plasmons in a gluon plasma from one-loop
thermal perturbation theory. Some of the results that were accumulated in
the 80’s are summarized in Table 1. These turned out to be gauge indepen-
dent in algebraic gauges but gauge-parameter dependent in covariant ones.
Moreover, in the latter the damping constant came out with the wrong sign
which some took as signal of an instability of the perturbative ground state
[65,102].

Table 1. Bare one-loop gluonic plasmon damping constant γ(|k| → 0)

γpl./[ g2TN
24π

] gauge published

−[ 114 + (α
2 − 2)2] covariant gauges 1980 [75]

+1 temporal gauge 1985 [73]
+1 Coulomb gauge 1987 [67]

−[11 + 1
4 (1 − α)2] background covariant gauges [3] 1987 [65]

− 45
4 gauge-independent effective action [123,112] 1987 [65]

−11 gauge-independent pinch technique [44] 1988 [102]
...

It was in particular Pisarski [108] who argued that these results were
simply incomplete, and who together with Braaten [38,39,36] devised an ap-
propriate resummation scheme. However, since explicit calculations can only
be performed in practice with a rather limited choice of gauge parameters,
it is important to investigate more generally how gauge dependent the full
propagators are and whether they contain gauge-independent information at
all. To this end, we shall first derive rather general “gauge dependence identi-

6 Notice that gauge invariance and gauge-fixing parameter independence are sep-
arate issues: a functional of fields can be gauge invariant and yet depend para-
metrically on the gauge-fixing function; conversely, independence of gauge fixing
parameters (within a class of gauges) does not imply that a particular functional
(e.g. of mean fields) is a gauge-invariant one.
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ties” and study their consequences for the thermal Green functions of interest
[82,83].

Primary Diagrams. In order to unclutter the relevant relations, we shall
temporarily switch to the compact notation of DeWitt [47], where a single
index i comprises all discrete and continuous field labels (e.g. i = (A,μ, a, x))
and Einstein’s summation convention is extended to include integration over
all of space and time (the latter along the contour C). This way, ϕi will
represent an arbitrary gauge or matter field ϕi = {Aai

μi
(xi), ψai

σi
(xi), . . .}; only

the Faddeev-Popov ghosts fields will be treated separately.
The generating functional of Green functions reads

Z[J ] = 〈eiJiϕ
i〉 with Jiϕ

i =
∫
C
d4x[J(A)μa(x)Aμa(x) + . . .] (58)

and depends implicitly on a gauge fixing functional Fα[ϕ], where α = (aα, xα)
comprises both a group and a space-time index.

Information on the dependence on Fα can be obtained either by using
BRS techniques or equivalently by employing the non-local gauge transfor-
mation of (53), which in compact notation reads

δϕi = Di
α[ϕ]δξα with δξα = δξα[ϕ] = −Gα

β [ϕ] δF β [ϕ], (59)

where Di
α is a generalized function containing the gauge generators, and

Gα
β [ϕ] = −(F β

,iD
i
α)−1[ϕ] is the Faddeev-Popov ghost propagator in a back-

ground field ϕ. This immediately gives

δ lnZ[J ] = iJj

〈
Dj

α[ϕ]Gα
β [ϕ] δF β [ϕ]

〉
[J ] under Fα → Fα + δFα. (60)

Fig. 2. Additional Feynman rules for δXj [ϕ̄] in the case of linear gauge generators
D and linear gauge fixing F

The diagrammatic content of (60) is more conveniently investigated after
a Legendre transformation of W [J ] ≡ −i lnZ[J ] to the effective action

Γ [ϕ̄] = W [J ] − Jjϕ̄
j , ϕ̄j =

δW [J ]
δJj

, (61)
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Fig. 3. Primary diagram expansion of δXj [ϕ̄] through 2-loop order. Contributions
involving an undifferentiated δF α[ϕ̄] have been dropped, which corresponds to omit-
ting the trivial tree-level gauge dependence [83]

which is the generating functional of one-particle-irreducible (1-p-i) diagrams.
Equation (60) then becomes

δΓ [ϕ̄] =
δΓ [ϕ̄]
δϕ̄j

〈
Dj

α[ϕ]Gα
β [ϕ] δF β [ϕ]

〉
[ϕ̄] ≡ Γ,j [ϕ̄] δXj [ϕ̄] . (62)

Diagrammatically, Γ,j [ϕ̄] is the sum of all mean-field dependent (primary)
1-p-i one-point diagrams, while δXj [ϕ̄] is given by primary diagrams which
involve the additional vertices introduced in Fig. 2 and which are 1-p-i except
for the basic ghost line attached to δF β , as shown in Fig. 3.

From these relations one can derive gauge dependence identities for 1-p-i
vertex functions by differentiation with respect to ϕ̄. For example, the gauge
dependences of the 2-point vertex function (self-energy) Γ,ij [0] are determined
by the diagrams shown in Fig. 4.

QED. As a first application let us consider the case of an Abelian theory such
as QED. The additional Feynman rules of Fig. 2 involve the ghost propagator,
but there are no further ghost vertices in the theory (for linear gauge fixing),
so only the very first diagram in Fig. 4 arises.
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Fig. 4. Gauge dependence of the 2-point vertex function Γij [0] assuming that all
one-point functions vanish at ϕ̄ = 0

Furthermore, the structure of the gauge generator is such that

=
{
∂

(xi)
μi if i ↔ Aμi

(xi)
0 else

=

{
0 if i, j ↔ Aμ

±ie if i, j ↔
(−)
ψ

(63)

If the external indices i, j of δΓ,ij correspond to photons, one finds that
one cannot even build the one remaining diagram of Fig. 4, so δΓAμAν proves
to be completely gauge-fixing independent. This is in fact a well-known result
which can be understood also by the gauge invariance of the electromagnetic
current operator.

On the other hand, if the external lines are fermionic, there is a non-trivial
right-hand-side to Fig. 4, as shown in Fig. 5, so the fermion self-energy is a
gauge fixing dependent quantity, already in QED.

Fig. 5. Gauge dependence identity for the fermion self-energy

Hard Thermal/Dense Loops. In the high-temperature (large-chemical-
potential) limit of QED and QCD, it turns out that the leading contributions
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to the 1-loop vertex functions, the so-called “hard thermal (dense) loops”
(HTL/HDL) obey tree-level-type ghost-free Ward identities and appear to
be gauge-fixing independent [59,39,37]. This gauge independence, however,
does not arise in an obvious way and involves non-trivial cancellations in the
various gauges that have been considered.

The above gauge dependence identities can be used to verify the gauge
independence of the HTL’s in a rather simple manner. The only further
ingredients needed are the temperature power-counting rules given in [39],
which, roughly, read as follows: in a Feynman diagram, explicit loop momenta
in the numerator give a factor T , each propagator counts as T−1, and the
sum-integral over the loop momentum contributes T 3 unless there are two
or more propagators with the same statistics, in which case the sum-integral
counts as T 2.

By this, the leading temperature contributions to a 1-loop vertex func-
tion are found to be proportional to T 2, such that an N -point gluon vertex
function scales as Γ,(N) ∼ gNT 2k2−N (where k represents generically com-
ponents of external momenta). If two external lines are fermionic, we have
Γ,(N) ∼ gNT 2k1−N , while vertex functions with more than two external
fermion lines do not contribute terms ∝ T 2.

Considering e.g. vertex functions with only external gluons, all of the
potential gauge dependences of the HTL’s are contained in the 1-loop contri-

butions to δΓ,(N) =
N∑

M=0
perms.

Γ,(N+1−M)δX
·
,(M) with the diagrammatic structure

of δX ·
,(M) as given by

δX ·
,(M) =

∑
perm.

{ }
. (64)

The above temperature power-counting rules are modified only by the ad-
ditional vertex δFα

,i [0] which may bring in one power of loop momentum and
thus one power of T in derivative gauges, or none in algebraic ones. Adding
up, one finds that the right-hand-side of (64) is proportional to T 0...1. Hence,
gauge dependences of one-loop vertex functions can occur only at sublead-
ing order ∝ T . HTL(HDL)’s on the other hand are found to be completely
gauge-fixing independent.

5.3 Gauge Independence of Propagator Singularities

In non-Abelian gauge theories, all the matter and gauge field vertex func-
tions, self-energies, and propagators contain highly nontrivial gauge depen-
dences, which raises the question whether there is any gauge-independent
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and therefore potentially physical information in those at all. We shall give
an affirmative answer by showing that (the locations of) certain singularities
of the full propagators are indeed gauge independent [82].

Non-Abelian Gauge-Boson Propagator. We begin by analysing the Lor-
entz structure of the gluon propagator in the case of a general gauge that
preserves the rotational symmetry. Moreover, we shall simplify things by
dropping any color indices, which presupposes the absence of color symmetry
breaking.7

In momentum space one can define a transverse projection of the 4-
velocity of the heat bath, ñμ = (gμσ − kμkσ

k2 )uσ, and use it to write the
general structure of the gauge-boson propagator as

Gμν(k) = ΔAAμν +ΔBBμν +ΔCCμν +ΔDDμν (65)

with
Aμν(k) = [gμν − kμkν

k2 ] − ñμñν

ñ2 , Bμν(k) =
ñμñν

ñ2 ,

Cμν(k) =
1
|k| {ñμkν + kμñν} , Dμν(k) =

kμkν

k2 .
(66)

Here Aμν is the spatially transverse projector introduced already in (48),
and Bμν is a second, independent tensor that is likewise transverse with
respect to 4-momentum, but longitudinal with respect to 3-momentum. Cμν

and Dμν complete the basis of symmetric tensors, with Cμν chosen such that
kμCμνkν = 0, and Dμν longitudinal with respect to 4-momentum.

A, B, and D are idempotent, whereas C2 = −(B + D). Under a Lorentz
trace, products of one such tensor with a different one vanish; without trace,
A is orthogonal to all the others, but among the rest one only has B ⊥ D.

Similarly, we shall decompose the gluon self-energy Πμν = G−1μν −G−1μν
0

according to

Πμν = −ΠAAμν −ΠBBμν −ΠCCμν −ΠDDμν . (67)

At momentum scales ω, k � T, μ, the leading-order term in the one-loop
polarisation tensor Πμν is given by the HTL (HDL) ∼ max(T 2, μ2), which
has only 4-d-transverse contributions

ΠHTL
A =

1
2
(ΠHTL

μ
μ −ΠHTL

B ), (68a)

ΠHTL
B = −k2

k2Π
HTL
00 , (68b)

ΠHTL
C = 0, (68c)

ΠHTL
D = 0, (68d)

7 The extension of the following results to color superconducting situations has
not yet been worked out, but would be of great interest in view of the gauge
dependence issues there [111].
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where, at high T ,

ΠHTL
μ

μ =
e2T 2

3
, (69)

ΠHTL
00 =

e2T 2

3

(
1 − k0

2|k| ln
k0 + |k|
k0 − |k|

)
. (70)

As a function of frequency and 3-momentum, the result is identical in QED
and QCD, if for the latter we define e2 := g2(N +Nf/2) (for SU(N) with Nf

flavors) [75,124]. If there is also a nonvanishing chemical potential μ, a similar
result holds where T 2 → T 2 + 3

π2μ
2 in terms ∝ Nf (all of them in QED)—

with obvious generalization to the case of different chemical potentials μi for
different flavors i.

The HTL-dressed propagator GHTL = (G−1
0 +ΠHTL)−1 has poles off the

usual light-cone, which come in two branches determined by

ΔHTL−1
A = k2 −ΠHTL

A = 0, (71a)
ΔHTL−1

B = k2 −ΠHTL
B = 0. (71b)

Since, as we have seen above, the HTL contribution is completely gauge
independent and the gauge fixing parameters contained in G−1

0 do not appear
in (71a,71b), the A- as well as the B-part of the HTL propagator is completely
gauge independent.

The physical interpretation of the A- and B-branch of propagator poles
(displayed in Fig. 6) is that the former represents quasi-particles which are
in-medium versions of the physical polarisation of the gauge bosons, while the
appearance of the B-branch is a purely collective phenomenon corresponding
to charge density oscillations (plasmons) above the plasma frequency and to
charge screening below.

Beyond the HTL approximation and in non-Abelian theories, however,
one has gauge parameter dependences within Π, and also Πμνk

μ �= 0 so that
ΠC �= 0, ΠD �= 0.

Considering a general, rotationally invariant gauge f̃μ(k)Ãμ(k) as in (46),
this can be parameterized as

f̃μ(k) = β̃(k)kμ + γ̃(k)ñμ. (72)

Covariant gauges then correspond to β̃ = 1, γ̃ = 0, Coulomb gauges to β̃ =
ñ2, γ̃ = −k0, and temporal axial gauge to β̃ = k0/k2, γ̃ = 1.

The structure functions of the gauge propagator become more compli-
cated, to wit,

ΔA = [k2 −ΠA]−1 (73a)

ΔB = [k2 −ΠB − 2β̃γ̃|k|ΠC − αΠ2
C + γ̃2ñ2ΠD

β̃2k2 − αΠD

]−1 (73b)

ΔC = − β̃γ̃|k| − αΠC

β̃2k2 − αΠD

(73c)
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Fig. 6. The location of the zeros of ΔHTL−1
A (transverse gluons) and of ΔHTL−1

B

(longitudinal plasmons) in quadratic scales such as to show propagating modes and
screening phenomena on one plot. Above a common plasma frequency ωpl. there
are propagating quasi-particle modes, which for large momenta in branch A tend to
a mass hyperboloid with asymptotic mass m2

∞ = 3
2ω2

pl., and in branch B approach
the light-cone exponentially with exponentially vanishing residue. For ω < ωpl.,
|k| is the inverse screening length, which in the static limit vanishes for mode A
(absence of magnetostatic screening), but reaches the Debye mass, m̂2

D = 3ω2
pl., for

mode B (electrostatic screening)

ΔD =
γ̃2ñ2 + α(k2 −ΠB)

β̃2k2 − αΠD

ΔB (73d)

and there are gauge parameters everywhere, both explicitly and also within
the structure functions of Π.

These gauge dependences are controlled by the gauge dependence identi-
ties discussed above, and, in compact notation, they have the form

δΔij
∣∣∣
J=0

= −(ΔimδXj
,m + δXi

,mΔ
mj)

∣∣∣
J=0

(74)

for the full propagator. Specialized to the thermal gauge-boson propagator
in fμ-gauge, one finds [82,83]

δΔ−1
A = Δ−1

A

[
−Aμ

ν (k)δXν
,μ(k)

]
≡ Δ−1

A δY (75a)

δΔ−1
B = Δ−1

B

[
− ñμ

ñ2 +
γ̃β̃ − αΠC/|k|
β̃2k2 − αΠD

kμ

]
2ñνδX

ν
,μ ≡ Δ−1

B δZ (75b)

but no such relations for ΔC and ΔD.
If δY and δZ are regular on the two “mass-shells” defined by Δ−1

A =
0 and Δ−1

B = 0, the relations (75a,75b) imply that the locations of these
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particular singularities of the gluon propagator are gauge fixing independent,
for if Δ−1

A = 0 = Δ−1
B then also Δ−1

A + δΔ−1
A = 0 = Δ−1

B + δΔ−1
B .

So everything depends on whether the possible singularities of δXν
,μ could

coincide with the expectedly physical dispersion laws Δ−1
A = 0 and Δ−1

B = 0.
Diagrammatically, δXν

,μ is obtained from the primary diagrams of Fig. 3 by
inserting one additional vertex in all possible ways (and omitting all result-
ing tadpole-like diagrams in the case of no spontaneous symmetry breaking).
Since the primary diagrams are 1-particle reducible with respect to the ba-
sic ghost line attached to δFα

i , δXν
,μ will have singularities like the (full)

ghost propagator. These singularities are however generically different from
those that define the spatially transverse and longitudinal gauge-boson quasi-
particles. Indeed, in leading-order thermal perturbation theory, the temper-
ature power-counting rules referred to in Sect. 7 imply that the ghost prop-
agator does not receive contributions ∼ e2T 2 and thus will have completely
different dispersion laws.

The other parts of the diagrams making up δXν
,μ are 1-p-i and may develop

singularities for other reasons, namely when one line of such an 1-p-i diagram
is of the same type as the external one, and the remaining ones are massless.
This may potentially give rise to infrared or mass-shell singularities. However,
these singularities will be absent as soon as an overall infrared cut-off is
introduced, for example by considering first a finite volume. In every finite
volume, this obstruction to the gauge-independence proof is then avoided,
and Δ−1

A = 0 and Δ−1
B = 0 define gauge-independent dispersion laws if the

infinite volume limit is taken last of all [114].
This reasoning leads to the conclusion that the positions of all the sin-

gularities of ΔA are gauge-fixing independent, though not necessarily their
type or e.g. their residues if they are simple poles. In the case of ΔB , there is
a slight complication by the contents of the square bracket in (75b). There is
a kinematical pole 1/k2 hidden in the ñ’s, and there is a contribution from
the obviously gauge-dependent ΔD (cf. (73d)). These gauge artefacts have
to be excluded, but they are gauge dependent already at tree level and thus
easy to identify. For example, ΔB as defined above has a factor of k2 which
cancels in the Coulomb gauge propagator but not in that of covariant gauges,
so this massless mode is a gauge mode and thus unphysical.

The gauge-(in)dependence identities (75a,75b) also explain the gauge de-
pendences found in the one-loop calculation of the plasmon damping constant
mentioned above. Truncating e.g. (75a) at one-loop order gives

δΔ−1
A

(1)(k) = Δ−1
A

(0)δY (1), (76)

with superscripts referring to bare loop order and using that δY (0) ≡ 0.
However, the HTL plasma dispersion law is derived fromΔ−1

A
(0)+Δ−1

A
(1) = 0,

and the “correction” Δ−1
A

(1) ∼ ΠHTL ∼ g2T 2 ∼ ω2
pl. is not small but sets the

scale for everything. The temperature-power-counting rules of Sect. 7 give
δY (1) ∼ g2T/ωpl., so the right-hand side of (76) does not vanish at the order
of the damping contribution γ × ωpl. ∼ gω2

pl..
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On the other hand, if one does have a good expansion parameter (which
bare loop order obviously is not), then the identities (75a,75b) imply order-
by-order gauge independence.

As will be discussed further below, HTL perturbation theory [38,39] claims
to be a systematic framework, although not up to arbitrarily high orders,
and the expansion parameter is essentially

√
g2. In [36], the long-wavelength

plasmon damping constant has been calculated by Braaten and Pisarski with
the result γ(|k| = 0)/[ g2TN

24π ] = +6.635 . . . and formal checks as to its gauge
independence were positive.

More explicit calculations by Baier et al., however, revealed that, in co-
variant gauges and on plasmon-mass-shell, HTL-resummed perturbation the-
ory still leads to explicit gauge dependent contributions to the damping of
fermionic [17] as well as gluonic [16] quasi-particles. But, as was pointed out
in [114], these apparent gauge dependences are avoided if the quasi-particle
mass-shell is approached with a general infrared cut-off such as finite vol-
ume, and this cut-off lifted only in the end. This procedure defines gauge-
independent dispersion laws and the gauge dependent parts are found to
pertain to the residue, which at finite temperature happens to be linearly
infrared singular in covariant gauges, rather than only logarithmically as at
zero temperature, due to Bose enhancement.

Extension to Fermions. The fermion propagator at non-zero temperature
or density has one more structure function than usually. In the ultrarela-
tivistic limit where masses can be neglected, the fermion self-energy can be
parametrized according to

Σ(k0,k) = a(k0, k) γ0 + b(k0, k)k̂ · γ (77)

with k̂ = k/|k| (again neglecting the possibility of color superconductivity).
Defining Σ±(k0, k) ≡ b(k0, k) ± a(k0, k), a natural decomposition of the

fermion self-energy and propagator S−1 = −�k +Σ is given by

γ0Σ(k0,k) = Σ+(k0, k)Λ+(k̂) − Σ−(k0, k)Λ−(k̂), (78)

γ0S
−1(k0,k) = Δ−1

+ (k0, k)Λ+(k̂) + Δ−1
− (k0, k)Λ−(k̂) (79)

with Δ−1
± ≡ −[k0 ∓ (k +Σ±)] and spin matrices

Λ±(k̂) ≡ 1 ± γ0γ · k̂
2

, Λ+ + Λ− = 1, (80)

Λ2
± = Λ±, Λ+Λ− = Λ−Λ+ = 0, TrΛ± = 2, (81)

projecting onto spinors whose chirality is equal (Λ+), or opposite (Λ−), to
their helicity.
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In the HTL approximation where |k0|, |k| � max(T, μ), the fermion self-
energy has been first calculated by Klimov [80] as

ΣHTL
± (k0, k) =

M̂2

k

(
1 − k0 ∓ k

2k
log

k0 + k

k0 − k

)
, (82)

where M̂2 is the plasma frequency for fermions, i.e., the frequency of long-
wavelength (k → 0) fermionic excitations

M̂2 =
g2Cf

8

(
T 2 +

μ2

π2

)
. (83)

(Cf = (N2 − 1)/2N in SU(N) gauge theory, and g2Cf → e2 in QED.)
This leads to two separate branches of dispersion laws of fermionic quasi-

particles Δ±(ω, k)−1 = 0 carrying particle and hole quantum numbers re-
spectively [125,107]. As shown in Fig. 7, the (−)-branch, which is occasionally
nicknamed “plasmino”, exhibits a curious dip reminiscent of the dispersion
law of rotons in liquid helium.

-1 0 1 2 3 4 5

1

2

3

4

5

k2/M̂2

ω2/M̂2

(+)

(−) . . . “plasmino”

Fig. 7. The location of the zeros of Δ−1
± in the HTL approximation in quadratic

scales. The additional collective modes of branch (−) (“plasminos”) has a minimum
of ω at ω/M̂ ≈ 0.93 and |k|/M̂ ≈ 0.41 and approaches the light-cone for large
momenta, but with exponentially vanishing residue. The regular branch approaches
a mass hyperboloid (here a straight line parallel to the diagonal) with asymptotic
mass

√
2M̂

As we have seen in Sect. 7, gauge dependences start at order T in the
high-temperature expansion. While the HTL result (82) is completely gauge
independent, gauge parameter dependences enter at subleading order. The
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gauge dependence identity for the fermion propagator is, however, somewhat
simpler than that for the gluon propagator. The singularities in the fermion
propagator can be summarized by

det
(
S−1

σ�̄

)
= 0, (84)

where σ, "̄ are spinor indices. The gauge dependence identity thus takes the
form

δ det
(
S−1

σ�̄

)
(k) = −det

(
S−1

σ�̄

)
(k) [δXτ

,τ (k) + δX τ̄
,τ̄ (k)], (85)

where the two expressions within the square brackets are Dirac traces of the
diagrams appearing within the braces in Fig. 5.

The conclusion of gauge independence of the solutions of (84) can now
be reached by essentially the same arguments as those for the gauge boson
propagator (with the exception that now there are no additional, gauge-
dependent kinematical poles like those arising in the projection onto mode B
in (75b)). The only obstruction to gauge independence comes from singular-
ities of δXτ

,τ (k) and δX τ̄
,τ̄ (k). If mass-shell singularities from massless gauge

modes are avoided by infrared regularization or finite volume, only the singu-
larities of the ghost propagator need to be considered. Again, the latter are
generically different from those leading to the now fermionic quasi-particles
since ghosts do not have HTL self-energies ∼ T 2.

We have thus seen that all the singularities of the fermion propagator as
well as those of the A- and B-branch of the gluon propagator (with some
exceptions for the latter) are gauge-fixing independent. On the other hand,
residues (if those singularities are simple poles at all) are not protected and
may be gauge dependent; even the nature of the singularity may be different
from gauge to gauge, as is well known to be the case already for the electron
propagator in zero-temperature QED [31].

6 Quasiparticles in HTL Perturbation Theory

We have already seen that loop order in bare perturbation theory is not a good
expansion parameter for calculating corrections to quasi-particle properties
at soft scales ∼ gT . Technically what happens is that the HTL contributions
to one-loop vertex functions are of the same order of magnitude as their
tree-level counterparts for external momenta k ∼ gT :

ΓHTL
,N ∼ gNT 2k2−N ∼ gN−2k4−N ∼ ∂NL

∂AN

∣∣∣
k∼gT

. (86)

Therefore all HTL contributions need to be resummed in Feynman diagrams
that are sensitive to the soft regime k ∼ gT .

Since HTL’s are the leading contributions from hard momenta k ∼ T , this
can be understood as the transition from the bare Lagrangian to an effective,
Wilson-renormalized one for k ∼ gT , L → L + LHTL. LHTL is the effective
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Lagrangian containing all the HTL diagrams and arises from integrating out
all hard modes.

Soon after the identification of all the HTL’s of QCD in [59,39], it has
been found that, formally, LHTL has a comparatively simple and manifestly
gauge-invariant integral representation [120,41,60]

LHTL = M̂2
∫

dΩv

4π
ψ̄γμ vμ

v ·D(A)
ψ

−3
2
ω2

pl.tr
∫

dΩv

4π
Fμα vαv

β

(v ·Dadj.(A))2
Fμβ (87)

with M̂2 the fermionic plasma frequency given in (83) and ω2
pl. = 1

3Π
HTL
μ

μ the
more familiar one of the gauge bosons (cf. (69)). In this integral representation
v = (1,v) is a light-like 4-vector, i.e. with v2 = 1, and its spatial components
are averaged over by dΩv. v is the remnant of the hard plasma constituents’
momenta pμ ∼ Tvμ, namely their light-like 4-velocity, and the overall scale T
has combined with the coupling constant to form the scale of thermal masses,
M̂, ωpl. ∼ gT .

The HTL effective Lagrangian (87) is manifestly gauge invariant and
moreover gauge independent (M̂ and ωpl. do not depend on the gauge fix-
ing parameters used to integrate out the hard modes). It is non-local and
Hermitian only in a Euclidean form, i.e. prior to analytic continuation to
real time/frequencies. It has cuts which physically correspond to the phe-
nomenon of Landau damping. The equations of motions associated with (87)
can also be obtained from kinetic theory, which is extremely useful to gain
further physical insight [21,22,79,26]. There is also a noteworthy connection
to Chern-Simons theory [52,53,103].

Using (87) as an effective theory for soft scales ∼ gT means that the bare
propagators are to be replaced by those of HTL quasi-particles, and these
have infinitely many nonlocal vertices. E.g., the three-gluon vertex becomes

Γ abc
μν�

cl+HTL
(k, q, r) = igfabc

{
gμν(k − q)� + cycl.

+ 3ω2
pl.

∫
dΩv

4π
vμvνv�

[
r0

k · v r · v − q0
k · v q · v

]}
. (88)

In QCD, there are HTL vertices for any number of external gluons and up to
two quark lines, whereas in QED, where v ·Dadj.(A)) → v · ∂ in (87), there is
“only” an HTL photon self-energy Πμν , an HTL fermion self-energy Σ, and
vertices involving two fermions and an arbitrary number of photons.

While the effective Lagrangian (87) is gauge invariant and gauge inde-
pendent in its entirety, NLO corrections won’t be so. However, as we have
seen in the previous section, the positions of singularities of the effective
(quasi-particle) propagators are protected against gauge dependences by the
identities (75a), (75b), and (85).
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6.1 Long-Wavelength Plasmon Damping

The first such correction to be calculated by means of the HTL-resummed
perturbation theory was the damping rate of long-wavelength plasmons8 from
the shift of the pole of the gluon propagator at k = 0 from ω = ωHTL

pl. →
ω = ωpl. − iγ(k = 0) with the result [36]

γ(k = 0) = +6.635 . . .
g2NT

24π
= 0.264

√
Ng ωHTL

pl. , (89)

implying the existence of weakly damped plasmons for g � 1.
In QCD, where one is interested in the range g ∼ 1, one finds that the ex-

istence of plasmons as quasi-particles requires that g is significantly less than
2.2, so real QCD is on the borderline of having identifiable long-wavelength
quasi-particles.

The corresponding quantity for fermionic quasi-particles has been calcula-
ted in [81,40] with a comparable result: weakly damped long-wavelength
fermionic quasi-particles in 2- or 3-flavor QCD require that g is significantly
less than 2.7.

6.2 NLO Correction to Gluonic Plasma Frequency

In [117], Schulz has calculated also the real part of the NLO contribution
to the gluon polarization tensor in the limit of k → 0 which determines the
NLO correction to the gluonic plasma frequency.

The original power-counting arguments of [39] suggested that besides one-
loop diagrams with HTL-resummed propagators and vertices, there could be
also contributions from two-loop diagrams to relative order g. The explicit
(and lengthy) calculation of [117] showed that those contribute only at order
g2 ln(1/g) rather than g, and the NLO plasma frequency in a pure-glue plasma
was obtained as

ωpl. = ωHTL
pl.

[
1 − 0.09

√
Ng
]
. (90)

In this particular result, HTL-resummed perturbation theory turns out
to give a moderate correction to the leading-order HTL value even for g ∼ 1;
see however below.

While the calculations leading to (89) and (90) contain some interesting
physics, in the following we shall go into more detail only for a couple of
more tractable cases, which nonetheless will turn out to involve a number of
salient points.
8 For kinematical reasons, there should be no difference between spatially trans-

verse and longitudinal gluonic quasi-particles (cf. Fig. 6), since with k → 0 one
can no longer tell the one from the other. However, the limit k → 0 involves
infrared problems (see further below), and there are even explicit calculations
[2,1] that claim to find obstructions to this equality, which are, however, refuted
by the recent work of [48].
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6.3 NLO Correction to the Non-Abelian Debye Mass

The poles of the (gluon) propagator do not only give the dispersion law of
quasi-particles, but also the screening of fields with frequencies below the
plasma frequency and in particular of static fields. Below the plasma fre-
quency, there are poles for k2 < 0, as displayed in Fig. 6, corresponding in
configuration space to exponential fall-off with (frequency-dependent) screen-
ing mass

√|k2|, i.e. screening length 1/
√|k2|.

In the static case, branch A of the gluon propagator describes the screen-
ing of (chromo-)magnetostatic fields. While there is a finite screening length
as long as ω > 0, the A-branch of the HTL propagator becomes unscreened in
the static limit. Whereas in QED, a “magnetic mass” is forbidden by gauge
invariance [58,27], some sort of entirely non-perturbative magnetic mass is
expected in non-Abelian gauge theories in view of severe infrared problems
caused by the self-interactions of magnetostatic gluons [110,96,64].

Branch B, on the other hand, contains the information about screening of
(chromo-)electric fields as generated by static charges (Debye screening). The
Debye mass given by the leading-order HTL propagator is m̂D =

√
3ωpl.. The

determination of its NLO correction has a history that is at least as long as
the plasmon (damping) puzzle, for it starts already with (ultra-relativistic)
QED.

Customarily, the Debye mass (squared) has been defined as the infrared
limit Π00(ω = 0, k → 0), which indeed is correct at the HTL level, cf. (68b)
and (70).

In QED, this definition has the advantage of being directly related to
a derivative of the thermodynamic pressure, so that the higher-order terms
known from the latter determine those of ΠQED

00 (ω = 0, k → 0) through
[58,76]

Π00(0, k → 0)
∣∣∣
μ=0

= e2
∂2P

∂μ2

∣∣∣
μ=0

=
e2T 2

3

(
1 − 3e2

8π2 +
√

3e3

4π3 + . . .

)
. (91)

This result is gauge independent because in QED all of Πμν is.
In the case of QCD, there is no such relation. In fact, one expects δm2

D/m̂
2
D

∼ g rather than g3 because of gluonic self-interactions and Bose enhancement.
The calculation of this quantity should be much easier than the dynamic
ones considered above, because in the static limit the HTL effective action
collapses to just the local, bilinear HTL Debye mass term,

LHTL static−→ −1
2
m̂2

DtrA2
0. (92)

This is also gauge invariant, because A0 behaves like an adjoint scalar un-
der time-independent gauge transformations. Resummed perturbation theory
thus boils down to a resummation of the HTL Debye mass in the electrostatic
propagator, which is what had been done already since long [63,76].
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Using this simple (“ring”) resummation in QCD, one finds, however, the
gauge dependent result [121]

Π00(0, 0)/m2
D = 1 + α

N

4π

√
6

2N +Nf
g, (93)

where α is the gauge parameter of general covariant gauge (which coincides
with general Coulomb gauge in the static limit).

This result was interpreted as meaning that the non-Abelian Debye mass
could not be obtained in resummed perturbation theory [101] or that one
should use a physical gauge instead [73,76]. In particular, temporal axial
gauge was put forward, because in this gauge there is, like in QED, a linear
relationship between electric field strength correlators and the gauge propaga-
tor. However, because static ring resummation clashes with temporal gauge,
inconclusive and contradicting results were obtained by different authors
[72,61,73], and in fact one cannot do without vertex resummations if one
wants to be consistent there [15,106]. But be that as it may be, switching
to the chromoelectric field strength correlator is not good enough, for it is
gauge variant and its infrared limit is equally gauge dependent [116].

On the other hand, in view of the gauge dependence identities discussed
in the previous section, the gauge dependence of (93) is no longer surprising.
Gauge independence can only be expected “on-shell”, what in this context
means ω = 0 but k2 → −m̂2

D.
Indeed, the exponential fall-off of the electrostatic propagator is deter-

mined by the position of the singularity of ΔB(0, k), and not simply by its
infrared limit. This implies in particular that one should use a different def-
inition of the Debye mass already in QED, despite the gauge independence
of (91), namely [115]

m2
D = Π00(0, k)

∣∣∣
k2→−m2

D

. (94)

For QED (with massless electrons), the Debye mass is thus not given by
(91) but rather as

m2
D = Π00(0, k → 0) +

[
Π00(0, k)

∣∣
k2=−m2

D

−Π00(0, k → 0)
]

=
e2T 2

3

(
1 − 3e2

8π2 +
√

3e3

4π3 + . . .− e2

6π2 [ln
μ̃

πT
+ γE − 4

3
] + . . .

)
, (95)

where μ̃ is the renormalization scale of the momentum subtraction scheme,9

i.e. Πμν(k2 = −μ̃2)|T=0 = 0. Since de/d ln μ̃ = e3/(12π2) + O(e5), (95) is a
renormalization-group invariant result for the Debye mass in hot QED, which
(91) obviously failed to be.
9 The slightly different numbers in the terms ∝ e4T 2 quoted in [27,93] pertain to

the minimal subtraction (MS) scheme.
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In QCD, where gauge independence is not automatic, the dependence on
the gauge fixing parameter α is another indication that (93) is the wrong
definition. For (94) we need the full momentum dependence of the correction
δΠ00(k0 = 0,k) to ΠHTL

00 . Since only the electrostatic mode needs to be
dressed, this is not difficult to obtain [115]:

δΠ00(k0 = 0,k) = gm̂DN
√

6
2N+Nf︸ ︷︷ ︸

g2T

∫
d3−2εp

(2π)3−2ε

×
{

1
p2 + m̂2

D

+
1
p2 +

4m̂2
D − (k2 + m̂2

D)[3 + 2pk/p2]
p2[(p + k)2 + m̂2

D]

+α(k2 + m̂2
D)

p2 + 2pk
p4[(p + k)2 + m̂2

D]

}
. (96)

In accordance with the gauge dependence identities, the last term shows
that gauge independence holds algebraically for k2 = −m̂2

D. On the other
hand, on this “screening mass shell”, where the denominator term [(p +
k)2 + m̂2

D] → [p2 + 2pk], we encounter IR-singularities. In the α-dependent
term, they are such that they produce a divergent factor 1/[k2 +m2

D] so that
the gauge dependences no longer disappear even on-shell. This is, however,
the very same problem that had to be solved in the above case of the plas-
mon damping in covariant gauges. Introducing a temporary infrared cut-off
(e.g., finite volume), does not modify the factor [k2 +m2

D] in the numerator
but defuses the dangerous denominator. Gauge independence thus holds for
all values of this cut-off, which can be sent to zero in the end. The gauge
dependences are thereby identified as belonging to the (infrared divergent)
residue.

The third term in the curly brackets, however, remains logarithmically
singular on-shell as the infrared cut-off is to be removed. In contrast to the α-
dependent term, closer inspection reveals that these singularities are coming
from the massless magnetostatic modes and not from unphysical massless
gauge modes.

At HTL level, there is no (chromo-)magnetostatic screening, but, as we
have mentioned, one expects some sort of such screening to be generated
non-perturbatively in the static sector of hot QCD at the scale g2T ∼ gmD

[110,96,64].
While this singularity prevents evaluating (96) in full, the fact that this

singularity is only logarithmic allows one to extract the leading term of (96)
under the assumption of an effective cut-off at p ∼ g2T as [115]

δm2
D

m̂2
D

=
N

2π

√
6

2N +Nf
g ln

1
g

+O(g). (97)
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The O(g)-contribution, however, is sensitive to the physics of the magne-
tostatic sector at scale g2T , and is completely non-perturbative in that all
loop order ≥ 2 are expected to contribute with equal importance.

Because of the undetermined O(g)-term in (97), one-loop resummed per-
turbation theory only says that for sufficiently small g, where O(g ln(1/g)) �
O(g), there is a positive correction to the Debye mass of lowest-order pertur-
bation theory following from the pole definition (94), and that it is gauge
independent.

On the lattice, the static gluon propagator of pure SU(2) gauge theory at
high temperature has been studied in various gauges [68,46] with the result
that the electrostatic propagator is exponentially screened with a screening
mass that indeed appears to be gauge independent and which is about 60%
larger than the leading-order Debye mass for temperatures T/Tc up to about
104.

In [116], an estimate of the O(g) contribution to (97) has been made using
the crude approximation of a simple massive propagator for the magnetostatic
one, which leads to

δm2
D

m̂2
D

=
N

2π

√
6

2N +Nf
g

[
ln

2mD

mm
− 1

2

]
. (98)

On the lattice one finds strong gauge dependences of the magnetostatic
screening function, but the data are consistent with an over-all exponen-
tial behaviour corresponding to mm ≈ 0.5g2T in all gauges [68,45]. Using
this number in a self-consistent evaluation of (98) gives an estimate for mD

which is about 20% larger than the leading-order value for T/Tc = 10 . . . 104.
This shows that there are strong non-perturbative contributions to the

Debye screening mass mD even at very high temperatures. Assuming that
these are predominantly of order g2T , one-loop resummed perturbation the-
ory (which is as far as one can get) is able to account for about 1/3 of this
inherently non-perturbative physics already, if one introduces a simple, purely
phenomenological magnetic screening mass.

Other Non-Perturbative Definitions of the Debye Mass. A differ-
ent approach to studying Debye screening non-perturbatively without the
complication of gauge fixing is to consider spatial correlation functions of
appropriate gauge-invariant operators such as those of the Polyakov loop

L(x) =
1
N

TrP exp

{
−ig

∫ β

0
dτ A0(τ,x)

}
. (99)

The correlation of two such operators is related to the free energy of a quark-
antiquark pair [100]. In lowest order perturbation theory this is given by the
square of a Yukawa potential with screening mass m̂D [101]; at one-loop order
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one can in fact identify contributions of the form (98) if one assumes magnetic
screening [33,116], but there is the problem that through higher loop orders
the large-distance behaviour becomes dominated by the magnetostatic modes
and their lightest bound states [34].

In [10], Arnold and Yaffe have proposed to use Euclidean time reflection
symmetry to distinguish electric and magnetic contributions to screening,
and have given a prescription to compute the sublogarithmic contribution
of order g2T to mD nonperturbatively. This has been carried out in 3-d
lattice simulations for SU(2) [74,88] as well as for SU(3) [89]. The Debye mass
thus defined shows even larger deviations from the lowest-order perturbative
results than that from gauge-fixed lattice propagators. E.g., in SU(2) at T =
104Tc this deviation turns out to be over 100%, while in SU(3) the dominance
of g2T contributions is even more pronounced.

Clearly, (resummed) perturbation theory is of no use here for any tem-
perature of practical interest. However, the magnitude of the contributions
from the completely nonperturbative magnetostatic sector depends strongly
on the quantity considered. It is significantly smaller in the definition of the
Debye mass through the exponential decay of gauge-fixed gluon propagators,
which, as we have seen, leads to smaller screening masses on the lattice (and
gauge-independent ones, too, apparently). In quantities where the barrier in
perturbation theory arising from the magnetostatic sector occurs at higher
orders, HTL-resummed perturbation theory should be in much better shape,
and we shall find some support for this further below.

6.4 Dynamical Damping and Screening

A logarithmic sensitivity to the nonperturbative physics of the magnetostatic
sector has in fact been encountered early on also in the calculation of damping
of a heavy fermion [108], and more generally of hard particles [94,95,42,113]. It
also turns out to occur for soft quasi-particles as soon as they are propagating
[109,56] and not just stationary plasma oscillations.

Because this logarithmic sensitivity arises only if one internal line of (re-
summed) one-loop diagrams is static, the coefficient of the resulting g ln(1/g)-
term is almost as easy to obtain as in the case of the Debye mass, even though
the external line is non-static and soft, requiring HTL-resummed vertices (see
Fig. 8).

1/2 -+ 1/2

Fig. 8. One-loop diagrams in HTL-resummed perturbation theory. HTL-resummed
quantities are marked with a blob
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The infrared singularity arises (again) from the dressed one-loop diagram
with two propagators, one of which is magnetostatic and thus massless in
the HTL approximation, and the other of the same type as the external one,
so only the first diagram in Fig. 8 is relevant. The dressed 3-vertices in it
are needed only in the limit of one leg being magnetostatic and having zero
momentum. Because of the gauge invariance of HTL’s, these are determined
by the HTL self-energies through a differential Ward identity, e.g.

Γ̂μν�(k;−k; 0) = − ∂

∂k�
Π̂μν(k) (100)

for the 3-gluon vertex (color indices omitted).
Comparatively simple algebra gives [56]

δΠI(k)  −g2N4k2[1 + ∂k2ΠI(k)]2SI(k), I = A,B (101)

where

SI(k) := T

∫
d3p

(2π)3
1
p2

−1
(k − p)2 −ΠI(k − p)

∣∣∣
k2=ΠI(k),p0=0

, (102)

and the logarithmic (mass-shell) singularity arises because (k− p)2 −ΠI(k−
p) → −p2 + 2pk −ΠI(k − p) +ΠI(k) ∼ |p| as k2 → ΠI(k).

The IR-singular part of SI(k) is given by

SI(k) = T

∫
d3p

(2π)3
1
p2

1
p2 − 2pk +ΠI(k − p) −ΠI(k) − iε

 T [1 + ∂k2ΠI(k)]−1
∫

d3p

(2π)3
1
p2

1
p2 − 2pk − iε

= T [1 + ∂k2ΠI(k)]−1
∫ ∞

λ

dp

p

1
2|k| ln

p+ 2|k| − iε
p− 2|k| − iε

, (103)

where in the last line we have inserted an IR cutoff λ � gT for the p-integral
in order to isolate the singular behaviour.

One finds that (103) has a singular imaginary part for propagating modes,

SI(k)  i
T

8π|k| [1 + ∂k2ΠI(k)]−1 ln
|k|
λ

+O(λ0) (104)

for k2 > 0 (k real), and a singular real part in screening situations where
|k|2 → −κ2, κ ∈ R (i.e., k imaginary):

SI(k)  +
T

8πκ
[1 + ∂k2ΠI(k)]−1 ln

κ

λ
+O(λ0). (105)

So from one and the same expression we can see that logarithmic IR
singularities arise whenever |k| �= 0, leading to IR singular contributions to
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damping or (dynamical) screening, depending on whether ω > 0 or < 0 and
thus k2 > 0 or < 0. The case k = 0 is IR-safe, because (101) is proportional
to k2, while

SI(k) −→ T

4π2λ
[1 + ∂k2ΠI(k)]−1 +O

(
T |k|
λ2

)
for k → 0. (106)

This shows that there is a common origin for the infrared sensitivity of
screening and damping of HTL quasi-particles. The perturbatively calculable
coefficients of the resulting g ln(1/g)-terms are in fact beautifully simple: For
the damping of moving quasi-particles one obtains [109,56]

γI(|k|)  g2NT

4π
|k|[1 + ∂k2ΠI(k)]

ω(|k|)[1 − ∂ω2ΠI(k)]
ln

1
g

≡ g2NT

4π
vI(|k|) ln

1
g
, (107)

where vI(|k|) is the group velocity of mode I (which vanishes at k = 0).
The IR-sensitive NLO correction to screening takes its simplest form when
formulated as [56]

δκ2
I(ω) =

g2NT

2π
κI(ω)

(
ln

1
g

+O(1)
)
, (108)

where κI(ω) is the inverse screening length of mode I at frequency ω < ωpl.

(which in the static limit approaches the Debye mass and perturbatively
vanishing magnetic mass, resp., while approaching zero for both modes as
ω → ωpl.).

A completely analogous calculation for the fermionic modes (for which
there are no screening masses) gives

γ±(|k|) =
g2CFT

4π
|v±|(|k|)

(
ln

1
g

+O(1)
)

(109)

for |k| > 0. The group velocity v± equals ± 1
3 in the limit (|k|) → 0, and

increases monotonically towards +1 for larger momenta (with a zero for the
(−)-branch at |k|/M̂ ≈ 0.41). For strictly |k| = 0, the IR sensitivity in
fact disappears because (109) is no longer valid for |k| � λ, but one has
γ±(|k|)|sing. ∝ g2T |k|/λ instead. Thus γ±(0) is calculable at order g2T in
HTL-resummed perturbation theory, and has been calculated in [81,40].

The fermionic result (109) applies in fact equally to QED, for which one
just needs to replace g2CF → e2. This is particularly disturbing as QED does
not allow a non-zero magnetic mass as IR cutoff, and it has been conjectured
that the damping γ ∼ g2T or e2T itself might act as an effective IR cutoff
[94,95,109,4], which however led to further difficulties [105]. The solution for
QED was finally found by Blaizot and Iancu [23,24,25] who showed that
there the fermionic modes undergo over-exponential damping in the form
e−γt → e− e2

4π Tt ln(ωpl.t) (for v → 1), so finite time is the actual IR cut-off. The
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fermion propagator has in fact no simple quasi-particle pole, but nevertheless
a sharply peaked spectral density.

In non-Abelian theories, on the other hand, one does expect the static
(chromo-)magnetic field to have finite range, and lattice results do confirm
this, so the above estimates may be appropriate after all, at least for suffi-
ciently weak coupling.

6.5 NLO Corrections to Real Parts of Dispersion Laws

The above analysis has identified the imaginary parts of the dispersion laws
to be sensitive to non-perturbative IR physics except at k = 0 and where
the group velocity vanishes (which includes one further point at |k| �= 0
for the fermionic plasmino branch). On the other hand, the real parts of
the dispersion laws of gluonic and fermionic quasi-particles are IR-safe in
NLO HTL-resummed perturbation theory. However, such calculations are
tremendously difficult, and only some partial results exist so far in QCD
[57,54].

In the following, we shall restrict our attention to the case k2/ω2
pl. � 1 and

consider the two branches of the gluon/photon propagator in turn. In both
cases, interesting physics will be seen to be contained in the NLO corrections.

Longitudinal Plasmons. For momenta k2 � ω2
pl., the longitudinal plas-

mon branch approaches the light-cone, as can be seen in Fig. 6. From k2 =
ΠHTL

B (k) and (68b) one finds

ω2
B(|k|) → k2

(
1 + 4k2e−6k2/(e2T 2)

)
(110)

with e2 = g2(N + Nf/2) in QCD, so the light-cone is approached exponen-
tially. If one also calculates the residue, one finds that this goes to zero at
the same time, and exponentially so, too.

Instead of QCD, we shall consider the analytically tractable case of mass-
less scalar electrodynamics as a simple toy model with at least some simi-
larities to the vastly more complicated QCD case in that in both theories
there are bosonic self-interactions. There are however no HTL vertices in
scalar electrodynamics, which makes it possible to do complete momentum-
dependent NLO calculations [85].

Comparing HTL values of and NLO corrections to ΠB , one finds that as
k2 → 0 there are collinear singularities in both:

ΠHTL
B (k)/k2 → 3

2
ω2

pl.ln
k2

k2 (111)
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diverges logarithmically10, whereas

δΠB/k
2 → −eμ2

sc.th.

|k|√
k2

(112)

(with μsc.th. ∝ eT the thermal mass of the scalar). Because (112) diverges
stronger than logarithmically, one has δΠB > ΠHTL

B eventually as k2 → 0.
Clearly, this leads to a breakdown of perturbation theory in the immediate
neighbourhood of the light-cone (k2/|k|2 � (e/ ln 1

e )2), which this time is not
caused by the massless magnetostatic modes, but rather by the massless hard
modes contained in the HTL’s.

However, a self-consistent gap equation for the scalar thermal mass implies
that also the hard scalar modes have a thermal mass ∼ eT . Including this by
extending the resummation of the scalar thermal mass to hard internal lines
renders ΠB regular up to and including the light-cone one obtains

lim
k2→0

Πresum.
B

k2 =
e2T 2

3k2

[
ln

2T
μsc.th.︸ ︷︷ ︸
ln 4

e

+
1
2

− γE +
ζ ′(2)
ζ(2)

]
+ . . . (113)

The finiteness of (113) makes it possible that there is now a solution to the
dispersion law with k2 = 0 at k2/(e2T 2) = 1

3 ln 2.094...
e + O(e). Because all

collinear singularities have disappeared, continuity implies that there are also
solutions for space-like momenta k2 < 0, so the longitudinal plasmon branch
pierces the light-cone, having group velocity v < 1 throughout, though, as
shown in Fig. 9. While at HTL level, the strong Landau damping at k2 < 0
switches on discontinuously, it now does so smoothly through an extra factor
exp[−e√|k|/[8(|k| − ω)]], removing the longitudinal plasmons through over-
damping for (|k| − ω)/|k| � e2.

So the collinear singularities of HTL-resummed perturbation theory on
the light-cone were associated with a slight but nevertheless qualitative change
of the spectrum of longitudinal plasmons: instead of being time-like through-
out and existing for higher momenta, albeit with exponentially small and
decreasing residue and effective mass, they become space-like at a particular
point |k| ∼ eT ln 1

e and expire through Landau damping soon thereafter.
This phenomenon is in fact known to occur in non-ultrarelativistic (T <

me) QED [122], and has been considered in the case of QCD in a little-known
paper by Silin and Ursov [119], who speculated that it may lead to Cherenkov
phenomena in the quark-gluon plasma.

In QCD, the situation is in fact much more complicated. Under the as-
sumption that the collinear singularities are removed solely by the resum-
mation of asymptotic gluonic and fermionic thermal masses in hard internal

10 This is in fact the technical reason why the longitudinal branch approaches the
light-cone exponentially when k2 � ω2

pl..
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|k|/(eT )

Fig. 9. The longitudinal plasmon branch of scalar electrodynamics including NLO
corrections to the HTL result. The upper of the four lines gives the HTL result and
the lines below correspond to NLO corrections with e = 0.3, 1, and 2, respectively.
The latter three lines cross the light-cone such that the phase velocity starts to
exceed 1, but with group velocity < 1 throughout. In the space-like region, the
plasmon modes are damped by Landau damping, which is strong except in the
immediate neighborhood of the light-cone, where it is suppressed by a factor of
exp{−e

√
k/[8(k − ω)]}

lines, the value of |k| where longitudinal plasmons turn space-like has been
calculated in [85]. For a pure-glue plasma, it reads

k2
crit. = g2T 2[ln

1.48 . . .
g

+O(g)]. (114)

Such an extended resummation can in fact be related to an improved and
still gauge-invariant version of the HTL effective action [55], however it may
well be that damping effects are of equal importance here (in contrast to
scalar electrodynamics), so that (114) may not be complete. A similar un-
solved problem occurs in the calculation of the production rate of real, non-
thermalized photons in a quark-gluon plasma from HTL-resummed pertur-
bation theory [18,13,14].

Taken at face value, (114) would imply that propagating longitudinal
plasmons do no longer exist for g � 1.48, and a negative O(g) contribution
would even lower this bound.

Energetic Quarks and Transverse Gluons and Their Role in Self-
Consistent Thermodynamics At high momenta k2/ω2

pl. � 1 the addi-
tional collective modes of longitudinal plasmons and “plasminos” disappear.
At HTL level, they do so because the residues of the corresponding poles in
the gluon and quark propagators vanish exponentially, whereas at NLO, as we
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have just seen, they cross the light-cone and die from strong Landau damp-
ing. The remaining transverse gluonic and normal quark modes on the other
hand approach asymptotic mass hyperboloids. For transverse gauge bosons
the asymptotic thermal photon/gluon mass of the HTL approximation reads

ΠHTL
A → m2

∞ =
e2T 2

6
(115)

(e2 = (N +Nf/2)g2 for gluons); whereas in the case of fermions we have

2|k|ΣHTL
+ → 2M̂2 (116)

with M̂ the HTL fermionic plasma frequency given by (83).
These results remain the correct LO ones even for ω, |k| ∼ T , because the

light-cone values of ΠA and Σ+ are identical to their HTL/HDL values there
and do not depend on the HTL approximation that ω, |k| � T [84,55].

The asymptotic thermal masses play an interesting role in self-consistent
(approximations to) thermodynamics [28,29,30]: The LO (∝ g2) interaction
piece of the entropy density can be expressed in terms of the light-cone values
of the various self-energies and thus the asymptotic thermal masses. E.g., in
the pure-glue case, the g2-contribution to the entropy density reads

s(2) = −(N2 − 1)
∫
d3k dω

(2π)3
∂n(ω)
∂T

sgn(ω)δ(ω2 − k2)ReΠT (ω, k)

= − (N2 − 1)
6

m2
∞T = −N(N2 − 1)

36
g2T 3. (117)

Fermionic contributions give similarly

s
(2)
f = −NNf

6
M2

∞T, (118)

possibly with nonzero chemical potential μ. With nonzero μ, one can also
consider the quark density, which likewise is determined by the asymptotic
mass:

n
(2)
f = −NNf

2π2 M2
∞μ. (119)

Up to a T - and μ-independent integration constant, entropy and quark den-
sities determine the complete thermodynamical potential, and the above for-
mula give nice, universal formulae for the LO interaction terms.

Remarkably, also the NLO interaction term ∝ g3 can be directly related
to the properties of HTL/HDL quasiparticles. The so-called plasmon term of
the thermodynamic potential ∝ g3 is usually understood as arising from the
resummation of the static Debye mass, which needs to be kept only in the
zero modes of the electrostatic gluon propagator. The resulting coefficient of
the order-g3 contribution to the thermodynamic potential turns out, however,



Thermal Gauge Field Theories 201

to have an uncomfortably large value,11 and appears to spoil completely the
convergence of perturbation theory for all temperatures smaller than some
105Tc.

While it is correct that all that is needed for a calculation of the ther-
modynamic potential through order g3 is to approximate quarks and gluons
by their vacuum spectral densities except for the one massive electrostatic
mode [9], this is clearly a cruder approximation than that of HTL-resummed
propagators which contain a lot of physics beyond Debye screening.

In [28,29,30] it has been shown recently that in a self-consistent formu-
lation of the thermodynamic potentials entropy and density one can find a
real-time description of those using quasi-particles which at soft momenta
are described by the HTL effective propagators and at hard momenta by
their light-cone limits and NLO corrections thereof. Doing so, it turns out
that a larger part (up to 3

4 ) of the (soft) plasmon effect ∝ g3 comes from
the NLO corrections to the hard asymptotic masses, reflecting a massive12

reorganization of usual (Debye-screened) perturbation theory:

3
4
s(3) =

3
4
(N2 − 1)

m̂3
D

3π

= −(N2 − 1)
∫

d3k

(2π)3
1
k

∂n(k)
∂T

Re δΠT (ω = k)︸ ︷︷ ︸
δm2

∞(k)

(120)

(in the case of pure glue).
δm2

∞ in HTL-resummed perturbation theory is a non-local (momentum-
depedent) correction, which is infrared safe and thus calculable. Through the
relation (120) one can define the average correction

δ̄m2
∞ = − 1

2π
g2NTm̂D, (121)

which has a remarkably simple form. Similarly, for fermions one finds

δ̄M2
∞ = − 1

2π
g2CfTm̂D. (122)

Now, numerically, this correction is uncomfortably large:

δ̄m2
∞

m2∞
= 1 −

√
3N
π

g ≈ 1 − g (123)

(pure glue) so that perturation theory seems to become completely useless
for g � 1, i.e., αs � 0.1.
11 The same holds true for the order-g5 contribution which has been calculated for

QCD in [11,12,126,35].
12 Pun intended.
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Fig. 10. Various approximations to the thermal mass of a scalar boson in large-
N ϕ4 theory: leading-order HTL (LO), next-to-leading order (NLO) as given by
(125), and the approximately self-consistent (ASC) gap equation (126), which is
perturbatively equivalent to NLO. The MS renormalization scale is varied by a
factor of 2 about μ̄ = 2πT

However, a very similar problem arises already in simple scalar φ4 theory.
If one considers the large-N limit of the iso-vector O(N) g2φ4 theory, one
can write down an exact gap equation of the form [49,50]

m2 = 12g2
∫

d3k

(2π)3
n(

√
k2 +m2)√
k2 +m2

+
3m2

4π2

(
ln
m2

μ̄2 − 1
)

(124)

whose solution has a perturbative expansion beginning as

m2 = g2T 2(1 − 3
π
g + . . .), (125)

which happens to have the same O(g) coefficent as the QCD result (121), and
which likewise gives nonsense such as tachyonic thermal masses for g � 1.

However, if one instead writes down an approximate gap equation by
expanding in powers of m/T and dropping terms of order (m/T )2 ∼ g2:

m2 = g2T 2 − 3
π
g2Tm, (126)

then one finds that the solution to this simple quadratic equation in m gives
a function m(g) that is perturbatively equivalent to (125), but does not go
mad for g � 1. On the contrary, for the standard choice of renormalization
scale μ̄ = 2πT in MS, it gives a remarkably accurate approximation of the
solution to the full gap equation (124), as is shown in Fig. 10.

Implementing analogous “approximately self-consistent” gap equations
for the hard modes, a non-perturbative, UV finite and gauge-invariant ap-
proximation to entropy and density of hot QCD has been proposed in [28,29,30].
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It is perturbatively equivalent to conventional Debye-resummed perturbation
theory but goes beyond the latter in incorporating all of the collective phe-
nomena contained in HTL propagators as well as NLO effects in their asymp-
totic masses. When compared to available lattice data [32] (see Fig. 11 for the
pure-glue case), remarkable agreement is found down to temperatures ∼ 3Tc.
By contrast, conventionally resummed perturbation theory at order g3 leads
to S/SSB > 1 for all but exceedingly high temperatures.
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Fig. 11. Comparison of results from approximately self-consistent thermodynamics
based on the HTL propagator and a next-to-leading approximation (NLA) using
the analogue of (126) for the asymptotic gluon mass correction (121) with lattice
data from [32]. The gray band gives roughly the lattice data with their errors. The
analytical results are given with two boundaries corresponding to a variation of the
MS renormalization scale μ̄ from πT to 4πT

An optimistic conclusion one could draw from this is that the transition to
gluonic and quark quasi-particles is able to absorb a large part of the strong
elementary interaction into the spectral properties of the former, and that,
at least in infrared-safe situations, these quasi-particles have comparatively
weak residual interactions even in QCD at temperatures a few times above
the transition temperature.

Let me recall that even in the infrared-unsafe case of NLO corrections
to the Debye mass, the self-consistent NLO result (98) using a phenomeno-
logical magnetic mass gives the qualitatively correct result of a substantially
increased electric mass, while underestimating the magnitude of the increase
by a factor of 3 when compared to lattice simulations of chromoelectrostatic
propagators.
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7 Conclusions

Let us summarize the findings that are of specific interest to a perturba-
tive formulation of non-Abelian gauge theories at finite temperature and/or
density:

The leading-order results for self-energies and vertices in a high-temper-
ature/density expansion, the so-called hard thermal (dense) loops, form a
gauge-invariant and gauge-independent effective action, which is the basis for
a systematic perturbative expansion in powers of g (rather than g2), as long
as one does not run into the perturbative barrier formed by the completely
non-perturbative self-interacting chromomagnetostatic modes.

Beyond leading order, gauge dependences appear in all Green functions
of the fundamental fields. In particular, the propagators which are expected
to carry information on gluonic or fermionic quasi-particles depend on gauge-
fixing parameters. The gauge dependence identities that we have discussed
above imply, however, that under certain conditions the location of the sin-
gularities which define the dispersion laws of these quasi-particles are gauge-
independent, though not, e.g., residues or even the type of the singularities,
which need not be simple poles.

Already at NLO, screening lengths and damping constants are logarith-
mically infrared sensitive to the nonperturbative magnetostatic sector, with
the exception of zero 3-momentum. Infrared-safe quantities are also the real
corrections to the dispersion laws, which in the case of longitudinal plasmons
(and also of the plasmino branch of fermions) lead to a finite 3-momentum
range, and, at its upper end, to space-like phase velocities. In the case of
transverse gluonic quasiparticles and the normal branch of fermionic ones,
the NLO corrections play an important role in self-consistent formulations of
thermodynamics (the equation of state).

Particularly in QCD, one faces the problem that corrections to LO results
are rather large for almost all values of the coupling of interest. However, we
have seen indications that this poor convergence of thermal perturbation
theory may be overcome in approximately self-consistent reformulations.13

Where those can be implemented, the picture of weakly interacting quasi-
particles even in strong interactions seems to have some support from com-
parison with lattice data (where the latter are available), and may remain
valid down to a few times the deconfinement phase transition temperature.
13 There are alternative methods to reorganize thermal perturbation theory which

aim to improve its convergence. A particularly interesting one is “screened” or
“optimized” perturbation theory [77,43,8] which employs a single mass parameter
in a variational ansatz. In [5,6,7] an extension of this method to gauge theories
has been proposed which uses the HTL effective action uniformly at soft as well
as hard momenta with the thermal-mass prefactors ω2

pl. and M̂2 turned into
variational parameters. In contrast to the entropy-based approach, this requires
explicit dressed 2-loop contributions (involving HTL vertices) in order to contain
the correct LO interaction coefficients in the thermodynamic pressure.
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This picture, being primarily set up in real Minkowski space, is complemen-
tary to lattice or dimensional reduction formulations, and allows (analytical)
calculations from first principles also where lattice gauge theory calculations
are not (yet) feasible. Its potentials, in particular when combined with re-
sults from other nonperturbative approaches, are, in my opinion, not yet fully
explored.
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Summary. After a brief introduction into basic aspects of the formulation of lat-
tice regularized QCD at finite temperature and density we discuss our current
understanding of the QCD phase diagram at finite temperature. We present results
from lattice calculations that emphasize the deconfining as well as chiral symmetry
restoring features of the QCD transition, and discuss the thermodynamics of the
high temperature phase.

1 Introduction

Almost immediately after the ground-breaking demonstration that the nu-
merical analysis of lattice regularized quantum field theories [1] can also pro-
vide quantitative results on fundamental non-perturbative properties of QCD
[2] it has been realized that this approach will also allow to study the QCD
phase transition [3,4] and the equation of state of the quark-gluon plasma
[5]. During the last 20 years we have learned a lot from lattice calculations
about the phase structure of QCD at finite temperature. In fact, we do un-
derstand quite well the thermodynamics in the heavy quark mass limit of
QCD, the pure SU(3) gauge theory, and even have calculated the critical
temperature and the equation of state in this limit with an accuracy of a few
percent. However, it is only now that we start to reach a level of accuracy
in numerical calculations of QCD thermodynamics that allows to seriously
consider quantitative studies of QCD with a realistic light quark mass spec-
trum. An important ingredient in the preparation of such calculations is the
development of new regularization schemes in the fermion sector of the QCD
Lagrangian, which allows to reduce discretization errors and also improves
the flavour symmetry of the lattice actions. The currently performed inves-
tigations of QCD thermodynamics provide first results with such improved
actions and prepare the ground for calculations with a realistic light quark
mass spectrum.

The interest in analyzing the properties of QCD under extreme conditions
is twofold. On the one hand it is the goal to reach a quantitative description of
the behaviour of matter at high temperature and density. This does provide
important input for a quantitative description of experimental signatures for
the occurrence of a phase transition in heavy ion collisions and should also
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help to understand better the phase transitions that occurred during the
early times of the evolution of the universe. Eventually it also may allow to
answer the question whether a quark-gluon plasma can exist in the interior
of dense neutron stars or did exist in early stages of supernova explosions.
For this reason one would like to reach a quantitative understanding of the
QCD equation of state, determine critical parameters such as the critical
temperature and the critical energy density and predict the modification of
basic hadron properties (masses, decay widths) with temperature. On the
other hand the analysis of a complicated quantum field theory like QCD
at non-zero temperature can also help to improve our understanding of its
non-perturbative properties at zero temperature. The introduction of exter-
nal control parameters (temperature, chemical potential) allows to observe
the response of different observables to this and may provide a better under-
standing of their interdependence [6]. As such one would, for instance, like
to clarify the role of confinement and chiral symmetry breaking for the QCD
phase transition. In which respect is the QCD phase transition deconfining
and/or chiral symmetry restoring? In how far can the critical behaviour be
described by intuitive pictures based on percolation, bag or resonance gas
models which have been developed for the QCD transition? We will discuss
these qualitative aspects of the QCD thermodynamics and also present re-
sults on basic questions concerning the equation of state and the critical
temperature of the transition which ask for quantitative answers.

In the next section we give a short introduction into the lattice formu-
lation of QCD thermodynamics. In Section 3 we discuss the basic structure
of the QCD phase diagram at finite temperature as it is known from lattice
calculations. Section 4 is devoted to a discussion of basic thermodynamic ob-
servables which characterize the QCD transition to the plasma phase and we
will identify general properties which show the deconfining and chiral symme-
try restoring features of this transition. In Section 5 we comment on different
length scales characterizing the QCD plasma and try to establish the temper-
ature regime where lattice calculations may make contact with perturbative
approaches. A description of recent results on the QCD equation of state and
the critical temperature of the QCD transition which emphasizes the quark
mass and flavour dependence of these quantities is given in Sections 6 and 7,
respectively. A brief discussion of the problems arising in lattice formulations
of QCD at non-zero baryon number density or chemical potential is given in
Section 8. Finally we give our conclusions in Section 9 and describe a specific
set of improved gauge and fermion lattice actions in an Appendix.

2 The Lattice Formulation of QCD Thermodynamics

2.1 The Basic Steps from the Continuum to the Lattice ...

Starting point for the discussion of the equilibrium thermodynamics of QCD
on the lattice is the QCD partition function, which explicitly depends on the
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volume (V ), the temperature (T ) and the quark number chemical potential
(μ). It is represented in terms of a Euclidean path integral over gauge (Aν)
and fermion (ψ̄, ψ) fields,

Z(V, T, μ) =
∫

DAνDψ̄Dψ e−SE(V,T,μ) , (1)

where Aν and ψ̄, ψ obey periodic and anti-periodic boundary conditions in
Euclidean time, respectively. The Euclidean action SE ≡ SG +SF contains a
purely gluonic contribution (SG) expressed in terms of the field strength ten-
sor, Fμν = ∂μAν −∂νAμ − ig[Aμ, Aν ], and a fermion part (SF ), which couples
the gauge and fermions field through the standard minimal substitution,

SE(V, T, μ) ≡ SG(V, T ) + SF (V, T, μ) (2)

with

SG(V, T ) =

1/T∫
0

Δx0

∫
V

Δ3x
1
2
Tr FμνFμν (3)

SF (V, T, μ) =

1/T∫
0

Δx0

∫
V

Δ3x
nf∑

f=1

ψ̄f (γμ[∂μ − igAμ] +mf − μγ0)ψf . (4)

Here mf are the different quark masses for the nf different quark flavours
and g denotes the QCD coupling constant.

The path integral appearing in Eq. (1) is regularized by introducing a
four-dimensional space-time lattice of size N3

σ ×Nτ with a lattice spacing a.
Volume and temperature are then related to the number of points in space
and time directions, respectively,

V = (Nσ a)3 , T−1 = Nτ a . (5)

While the discretization of the fermion sector, at least on the naive level, is
straightforwardly achieved by replacing derivatives by finite differences, the
gauge sector is a bit more involved. Here we introduce link variables Uμ(x)
which are associated with the link between two neighbouring sites of the
lattice and describe the parallel transport of the field A from site x to x+ μ̂a,

Ux,μ = P exp
(
ig

∫ x+μ̂a

x

Δxμ Aμ(x)
)

, (6)

where P denotes the path ordering. The link variables Uμ(x) are elements
of the SU(3) colour group. A product of these link variables around an el-
ementary plaquette may be used to define an approximation to the gauge
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action,

W (1,1)
n,μν = 1 − 1

3
Re

n,μν
≡ Re Tr Un,μUn+μ̂,νU

†
n+ν̂,μU

†
n,ν

=
g2a4

2
F a

μνF
a
μν + O(a6) . (7)

A discretized version of the Euclidean gauge action, which reproduces the
continuum version up to cut-off errors of order a2, thus is given by the Wilson
action [1],

βSG = β
∑

n
0≤μ<ν≤3

W (1,1)
n,μν =⇒

∫
Δ4x LE + O(a2) , (8)

where we have introduced the gauge coupling β = 6/g2.
As is well known the naive discretization of the fermionic part of the ac-

tion, which is obtained by introducing the simple finite difference scheme to
discretize the derivative appearing in the fermion Lagrangian, i.e. ∂μψf (x) =
(ψn+μ̂ − ψn−μ̂)/2a, does in the continuum limit not reproduce the particle
content one started with. The massless lattice fermion propagator has poles
not only at zero momentum but also at all other corners of the Brillouin zone
and thus generates 16 rather than a single fermion species in the continuum
limit. One thus faces a severe species doubling problem. The way out has
been to either introduce an explicit chiral symmetry breaking term, which is
proportional to a∂2

μψf (x) and thus vanishes in the continuum limit (Wilson
fermions [1]), or to distribute the components of the fermion Dirac spinors
over several lattice sites (staggered fermions) [7]. The staggered fermion for-
mulation does not eliminate the species doubling problem completely. One
still gets four degenerate fermion species. However, it has the advantage that
it preserves a continuous subgroup of the original global chiral symmetry. In
the massless limit the chiral condensate thus still is an order parameter for
the occurrence of a phase transition at finite temperature.

Progress has been made in formulating lattice QCD also with chiral
fermion actions, which do avoid the species doubling and at the same time
preserve the chiral symmetry of the QCD Lagrangian. This can, for instance,
be achieved by introducing an extra fifth dimension [8]. At present, however,
very little has been done to study QCD thermodynamics on the lattice with
these actions [9]. Much more is known on the QCD thermodynamics from
calculations with Wilson and staggered fermions. We will in the following
present results from both approaches. However, to be specific we will restrict
ourselves here to a discussion of the staggered fermion formulation introduced
by Kogut and Susskind [7]. The fermion action can be written as

SKS
F =

∑
nm

χ̄nQ
KS
nmχm , (9)
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where the staggered fermion matrix QKS is given by

QKS
nm(mq, μ̃) =

1
2

3∑
μ=1

(−1)n0+...+nμ−1(δn+μ̂,mUn,μ − δn,m+μ̂U
†
m,μ)

+
1
2
(δn+0̂,mUn,0 eμ̃ − δn,m+0̂U

†
m,0) e−μ̃ + δnmmq . (10)

Here we have introduced the chemical potential μ̃ on the temporal links [10].
As the fermion action is quadratic in the Grassmann valued quark fields χ̄
and χ we can integrate them out in the partition function and finally arrive
at a representation of Z(V, T, μ) on a 4-dimensional lattice of size N3

σ ×Nτ ,

Z(Nσ, Nτ , β,mq, μ̃) =
∫ ∏

nν

ΔUn,ν(detQKS(mq, μ̃))nf /4e−βSG . (11)

We have made explicit the fact that the staggered fermion action does lead to
four degenerate fermion flavours in the continuum limit, i.e. taking the con-
tinuum limit with the action given in Eqs. 9 and 10 corresponds to nf = 4
in Eq. (11). As the number of fermion species does appear only as an appro-
priate power of the fermion determinant, which is true also in the continuum
limit, one also may choose nf �= 4 in Eq. (11). This is the approach used
to perform simulations with different number of flavours in the staggered
fermion formulation.

For μ̃ = 0 the fermion determinant appearing in Eq. (11) is real and
positive. Standard numerical techniques, which rely on a probability inter-
pretation of the integrand in Eq. (11), thus can be applied. For μ̃ �= 0 the
determinant, however, becomes complex. Although the contribution of the
imaginary part can easily be shown to be zero, as it should to give a real
partition function, the real part is no longer strictly positive. This sign prob-
lem so far still constitutes a major problem in the application of numerical
techniques to studies of QCD at non-zero baryon number density or non-zero
chemical potential. We therefore will restrict our discussion of QCD thermo-
dynamics mainly to the case μ̃ ≡ 0 and will come back to the problems one
faces for μ̃ �= 0 in Section 8.

2.2 ... and Back from the Lattice to the Continuum

The lattice discretized QCD action discussed above reproduces the contin-
uum action up to discretization errors of O(a2). In order to perform the
continuum limit at constant temperature, we will have to take the limit
(a → 0, Nτ → ∞) with T = 1/Nτa fixed. In particular, for bulk thermody-
namic observables like the pressure and energy density, which have dimension
[T 4] this limit is rather cumbersome. All lattice observables are dimension-
less and are thus calculated in appropriate units of the lattice spacing a. As
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a consequence a calculation of, e.g., the pressure will provide pa4 and thus
yields a numerical result which decreases in magnitude like N−4

τ . Numeri-
cal calculations, however, are always based on the analysis of a finite set of
suitably generated gauge field configurations and thus produce results which
have a statistical error. It therefore rapidly becomes difficult to calculate bulk
thermodynamic quantities on lattices with large temporal extent Nτ . For this
reason it is of particular importance for finite temperature calculations to be
able to use actions which have small discretization errors and thus allow to
perform calculations on lattices with moderate temporal extent. Such actions
have been developed and successfully applied in thermodynamic calculations
for the pure SU(3) gauge theory. In the fermion sector appropriate actions,
which reduce cut-off effects in the high temperature ideal gas limit, so far
have only been constructed for staggered fermions. As an example we de-
scribe a specific choice of improved gauge and staggered fermion actions in
more detail in an Appendix.

As mentioned above we have to perform the continuum limit in order
to eliminate lattice discretization errors and to arrive finally at quantitative
predictions for the QCD thermodynamics. Eventually we thus have to ana-
lyze our observables on different size lattices and extrapolate our results to
Nτ → ∞ at fixed temperature. Unless we perform calculations at a well de-
fined temperature, e.g., the critical temperature, we will have to determine
the temperature scale from an additional (zero-temperature) calculation of
an observable for which we know its physical value (in MeV). This requires
a calculation at the same value of the cut-off (same values of the bare cou-
plings). Of course, we know such a quantity only for the physical case realized
in nature, i.e. QCD with two light up and down quark flavours and a heavier
strange quark. Nonetheless, we have good reason to believe that certain ob-
servables are quite insensitive to changes in the quark masses, e.g., quenched
hadron masses1 (m̃H) or the string tension (σ̃) are believed to be suitable
observables to set a physical scale even in the limit of infinite quark masses
(pure SU(3) gauge theory). We thus may use calculations of these quantities
to define a temperature scale,

T/
√
σ = 1/

√
σ̃Nτ or T/mH = 1/m̃HNτ . (12)

In the pure SU(3) gauge theory as well as in the massless limit the lattice
spacing is controlled through β, the only bare coupling appearing in the Eu-
clidean action. Asymptotically a and β are then related through the leading
order renormalization group equation,

aΛL  (6b0/β)−b1/2b20e−β/12b0 , (13)
1 A physical observable O is calculated on the lattice as dimensionless quantity,

which we denote here by Õ. Quite often, however, we will also adopt the cus-
tomary lattice notation, which explicitly specifies the cut-off dependence in the
continuum limit, e.g., m̃H ≡ mHa or σ̃ ≡ σa2.
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where the two universal coefficients are given by

b0 =
1

16π2

(
11 − 2

3
nf

)
, b1 =

(
1

16π2

)2 [
102 −

(
10 +

8
3

)
nf

]
(14)

and ΛL is a scale parameter, which unambiguously can be related to the scale
parameter in other regularization schemes, e.g., to ΛMS . The continuum limit
thus is reached with increasing β.

In the case of non-zero quark masses one has in addition to insure that the
continuum limit is taken along a line of constant physics. This can be achieved
by keeping a ratio of hadron masses, for instance the ratio of pseudo-scalar
and vector meson masses, mPS/mV , constant while varying the couplings
(β,mq). In the limit β → ∞ this requires a tuning of the bare quark masses
such that mq → 0. We also note that for small quark masses the vector
meson mass mV approaches a constant, mV = mρ+O(mq), while the pseudo-
scalar is the Goldstone-particle corresponding to the broken chiral symmetry
of QCD (pion). Its mass is proportional to the square root of mq. In the
following we will quite often quote results as a function of mPS/mV which is
just another way for quoting results for different values of the quark mass.

3 The QCD Phase Diagram at Finite Temperature

At vanishing baryon number density (or zero chemical potential) the prop-
erties of the QCD phase transition depend on the number of quark flavours
and their masses. While it is a detailed quantitative question at which tem-
perature the transition to the high temperature plasma phase occurs, we do
expect that the nature of the transition, e.g., its order and details of the crit-
ical behaviour, are controlled by global symmetries of the QCD Lagrangian.
Such symmetries only exist in the limits of either infinite or vanishing quark
masses. For any non-zero, finite value of quark masses the global symme-
tries are explicitly broken. In fact, in the case of QCD the explicit symmetry
breaking induced by the finite quark masses is very much similar to that
induced by an external ferromagnetic field in spin models. We thus expect
that a continuous phase transition, which may exist in the zero or infinite
quark mass limit, will turn into a non-singular crossover behaviour for any
finite value of the quark mass. First order transitions, on the other hand, may
persist for some time before they end in a continuous transition. Whether a
true phase transition exists in QCD with the physically realized spectrum of
quark masses or whether in this case the transition is just a (rapid) crossover,
again becomes a quantitative question which we have to answer through di-
rect numerical calculations.

Our current understanding of the qualitative aspects of the QCD phase
diagram is based on universality arguments for the symmetry breaking pat-
terns in the heavy [11] as well as the light quark mass regime [12,13]. In
the limit of infinitely heavy quarks, the pure SU(3) gauge theory, the large
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distance behaviour of the heavy quark free energy, Fq̄q, provides a unique
distinction between confinement below Tc and deconfinement for T > Tc.
On a lattice of size N3

σ ×Nτ the heavy quark free energy2 can be calculated
from the expectation value of the Polyakov loop correlation function

exp
(

−Fq̄q(r, T )
T

)
= 〈TrLxTrL†

y〉 , rT = |x − y|Nτ , (15)

where Lx and L†
y represent static quark and anti-quark sources located at

the spatial points x and y, respectively,

Lx =
Nτ∏

x0=1

Un,0 , n ≡ (x0,x) . (16)

For large separations (r → ∞) the correlation function approaches |〈L〉|2,
where 〈L〉 = N−3

σ 〈∑x TrLx〉 denotes the Polyakov loop expectation value,
which therefore characterizes the behaviour of the heavy quark free energy
at large distances and is an order parameter for deconfinement in the SU(3)
gauge theory,

〈L〉
{

= 0 ⇔ confined phase, T < Tc

> 0 ⇔ deconfined phase, T > Tc
. (17)

The effective theory for the order parameter is a 3-dimensional spin model
with global Z(3) symmetry. Universality arguments then suggest that the
phase transition is first order in the infinite quark mass limit [11].

In the limit of vanishing quark masses the classical QCD Lagrangian
is invariant under chiral symmetry transformations; for nf massless quark
flavours the symmetry is

UA(1) × SUL(nf ) × SUR(nf ).

However, only the SU(nf ) flavour part of this symmetry is spontaneously bro-
ken in the vacuum, which gives rise to (n2

f − 1) massless Goldstone particles,
the pions. The axial UA(1) only is a symmetry of the classical Lagrangian. It is
explicitly broken due to quantum corrections in the QCD partition function,
the axial anomaly, and therefore gets replaced by a discrete Z(nf ) symmetry
at low temperature. The basic observable which reflects the chiral properties
of QCD is the chiral condensate,

〈χ̄χ〉 =
1

N3
σNτ

∂

∂mq
lnZ . (18)

2 In the T → 0 limit this is just the heavy quark potential; at non-zero temperature
Fq̄q does, however, also include a contribution resulting from the overall change
of entropy that arises from the presence of external quark and anti-quark sources.
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In the limit of vanishing quark masses the chiral condensate stays non zero
as long as chiral symmetry is spontaneously broken. The chiral condensate
thus is an obvious order parameter in the chiral limit,

〈χ̄χ〉
{
> 0 ⇔ symmetry broken phase, T < Tc

= 0 ⇔ symmetric phase, T > Tc
. (19)

For light quarks the global chiral symmetry is expected to control the crit-
ical behaviour of the QCD phase transition. In particular, the order of the
transition is expected to depend on the number of light or massless flavours.
The basic aspects of the nf -dependence of the phase diagram have been
derived by Pisarski and Wilczek [12] from an effective, 3-dimensional La-
grangian for the order parameter3,

Leff = −1
2
Tr(∂μΦ

†∂μΦ) − 1
2
m2Tr(Φ†Φ) +

π2

3
g1
(
Tr(Φ†Φ)

)2
+
π2

3
g2Tr

(
(Φ†Φ)2

)
+ c

(
detΦ+ detΦ†) , (20)

with Φ ≡ (Φij), i, j = 1, ..., nf . Leff has the same global symmetry as the
QCD Lagrangian. A renormalization group analysis of this Lagrangian sug-
gests that the transition is first order for nf ≥ 3 and second order for nf = 2.
The latter, however, is expected to hold only if the axial UA(1) symmetry
breaking, related to the detΦ terms in Eq. (20), does not become too weak
at Tc so that the occurrence of a fluctuation induced first order transition
would also become possible.

This basic pattern has indeed been observed in lattice calculations. So far
no indication for a discontinuous transition has been observed for nf = 2.
The transition is found to be first order for nf ≥ 3. Moreover, the transition
temperature is decreasing with increasing nf and there are indications that
chiral symmetry is already restored in the vacuum above a critical number
of flavours [15].

The anticipated phase diagram of 3-flavour QCD at vanishing baryon
number density is shown in Fig. 1. An interesting aspect of the phase diagram
is the occurrence of a second order transition line in the light quark mass
regime, the boundary of the region of first order phase transitions. On this line
the transition is controlled by an effective 3-dimensional theory with global
Z(2) symmetry [13], which is not a symmetry of the QCD Lagrangian. As this
boundary lies in the light quark mass regime it may well be that this second
order transition, for which neither the chiral condensate nor the Polyakov loop
will be the order parameter, is equally important for the critical or crossover
behaviour of QCD with a realistic quark mass spectrum as the nearby critical
3 It should be noted that this ansatz assumes that chiral symmetry is broken at

low temperatures. Instanton model calculations suggest that the vacuum, in fact,
is chirally symmetric already for nf ≥ 5 [14].
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Fig. 1. The QCD phase diagram of 3-flavour QCD with degenerate (u,d)-quark
masses and a strange quark mass ms

point in the chiral limit. In particular, we note that the critical exponent α
is positive for the 3-d, Z(2) symmetric models whereas it is negative for
the O(4) model. A nearby Z(2) symmetric critical point in the QCD phase
diagram will thus induce larger density fluctuations than would be expected
in the vicinity of the chiral critical point. It therefore will be important to
determine in detail the location of the physical point in the QCD phase
diagram.

4 Deconfinement versus Chiral Symmetry Restoration

As outlined in the previous section the two properties of QCD, which explain
the basic features of the observed spectrum of hadrons, are also of central
importance for the structure of the QCD phase diagram at finite temperature
– confinement and chiral symmetry breaking. While the former explains why
we observe only colourless states in the spectrum the latter describes the
presence of light Goldstone particles, the pions. The confining property of
QCD manifests itself in the long range behaviour of the heavy quark potential.
At zero temperature the potential rises linearly at large distances4, Vq̄q(r) ∼
σr, where σ  (425 MeV)2 denotes the string tension, and forces the quarks
and gluons to be confined to a hadronic bag. Chiral symmetry breaking leads
to a non-vanishing quark anti-quark condensate, 〈q̄q〉  (250 MeV)3 in the
4 Here large distances actually refer to r � 1 fm. For larger distances the sponta-

neous creation of quark anti-quark pairs from the vacuum leads to a breaking of
the string, i.e. the potential tends to a constant value for r → ∞ (see Fig. 4).
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vacuum. Inside the hadron bag, however, the condensate vanishes. At high
temperatures the individual hadronic bags are expected to merge to a single
large bag, in which quarks and gluons can move freely. This bag picture is
closely related to percolation models for the QCD phase transition [16]. It
provides an intuitive argument for the occurrence of deconfinement and chiral
symmetry restoration. A-priori it is, however, not evident that both non-
perturbative properties have to get lost at the same temperature. It has been
speculated that two distinct phase transitions leading to deconfinement at
Td and chiral symmetry restoration at Tχ could occur in QCD [17]. General
arguments about the scales involved5 suggest that Td ≤ Tχ. Two distinct
phase transitions indeed have been found in QCD related models like the
SU(3) gauge theory with adjoint fermions [18]. In QCD, however, there seems
to be only one transition from the low temperature hadronic regime to the
high temperature plasma phase. In fact, as can be seen from Fig. 1 there is
a wide range of parameters (quark masses) for which the transition is not
related to any singular behaviour in thermodynamic observables; instead of
a phase transition one observes just a rapid crossover behaviour. It thus is
legitimate to ask which thermodynamic properties change when one moves
from the low to the high temperature regime and to what extent these changes
are related to deconfinement and/or chiral symmetry restoration.

In the previous section we have introduced order parameters for deconfine-
ment in the infinite quark mass limit, 〈L〉, and chiral symmetry restoration
in the limit of vanishing quark masses, 〈ψ̄ψ〉. Related observables, which also
signal a sudden change in the long distance behaviour of the heavy quark
potential or the chiral condensate as function of temperature, are the corre-
sponding susceptibilities, the Polyakov loop susceptibility (χL) and the chiral
susceptibility (χm),

χL = N3
σ

(
〈L2〉 − 〈L〉2

)
, χm =

∂

∂mq
〈ψ̄ψ〉 . (21)

The behaviour of these observables is shown in Fig. 2 for the case of two
flavour QCD with light quarks. This clearly shows that the gauge coupling
at which the different susceptibilities attain their maxima, or correspond-
ingly the points of most rapid change in 〈L〉 and 〈ψ̄ψ〉 coincide. Calculations
of these observables for QCD with three degenerate quark flavours6 have
been performed for a wide range of quark masses [19]. They confirm that the
location of maxima in both susceptibilities are indeed strongly correlated.
Within statistical accuracy they occur at the same temperature, although
the height of these maxima is strongly quark mass dependent. This is shown
in Fig. 3. For large (mPS/mV >∼0.9) and small (mPS/mV <∼0.3) quark masses
5 The hadronic bag is larger than the constituent quark bag of a current quark

surrounded by its gluon cloud.
6 This corresponds to calculations along the dotted, diagonal line in the phase

diagram shown in Fig. 1.
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Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown
is 〈L〉 (left), which is the order parameter for deconfinement in the pure gauge
limit (mq → ∞), and 〈ψ̄ψ〉 (right), which is the order parameter for chiral sym-
metry breaking in the chiral limit (mq → 0). Also shown are the corresponding
susceptibilities as a function of the coupling β = 6/g2

the Polyakov loop and chiral susceptibility, respectively, show a strong vol-
ume dependence, which is indicative for the presence of first order phase
transitions in these corners of the phase diagram. Using zero temperature
string tension calculations the pseudo-scalar meson masses have been esti-
mated at which the first order transitions end in a second order transition.
For better orientation in the phase diagram these estimates, which at present
are not well established and certainly are still subject to lattice artifacts (dis-
cretization errors, flavour symmetry breaking), are shown in Fig. 1. As can
be seen there is a broad range of quark (or meson) masses for which the QCD
transition to the high temperature phase is a non-singular crossover.

As expected the first order phase transition in the large quark mass regime
is most clearly visible in the behaviour of the Polyakov loop susceptibility,
i.e. the fluctuation of the order parameter for the confinement-deconfinement
transition in the pure gauge (mq → ∞) limit. Similarly, the transition in the
chiral limit is most pronounced in the behaviour of the chiral condensate and
its susceptibility. This emphasizes the chiral aspects of the QCD transition.
One thus may wonder in what respect this transition in the light quark mass
regime is a deconfining transition.

4.1 Deconfinement

When talking about deconfinement in QCD we have in mind that a large num-
ber of new degrees of freedom gets liberated at a (phase) transition tempera-
ture; quarks and gluons, which at low temperature are confined in colourless
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It is apparent from this figure that there is no drastic qualitative change
in the structure of the heavy quark free energy as one crosses the transition
temperature. Although the most rapid change in ΔV ≡ Fq̄q(∞) − Fq̄q(r =
0.5/

√
σ) occurs for T  Tc and thus resembles the behaviour of the Polyakov

loop expectation value and its susceptibility shown in Fig. 2, the heavy quark
free energy does not seem to be a good indicator for deconfinement in the
presence of light quarks. It looses its role as a rigorous order parameter and
also does not reflect changes in the number of partonic degrees of freedom
contributing to the thermodynamics.

On the other hand, we expect that bulk thermodynamic quantities like
the pressure do reflect the relevant number of degrees of freedom contribut-
ing to the thermodynamics in the high temperature limit. Due to asymptotic
freedom the QCD pressure will approach the ideal gas value at infinite tem-
perature. In this limit the number of degrees of freedom (quarks+gluons) is
much larger than the three light pions which dominate the thermodynamics
at low temperature,

p

T 4 =

{
3π2

90 , T → 0
(16 + 21

2 nf )π2

90 , T → ∞ . (22)

This change of active degrees of freedom is clearly visible in calculations
of, e.g., the pressure in the pure gauge sector and for QCD with different
numbers of flavours. As can bee seen in Fig. 5 the pressure strongly reacts to
changes in the number of degrees of freedom. It is this drastic change in the
behaviour of the pressure or the energy density which indicates that the QCD
(phase) transition to the plasma phase indeed is deconfining. However, it also
is worthwhile to note that the transition does, in fact, take place at rather
small values of the pressure (and energy density). Only for temperatures
T>∼2Tc does the pressure come close to the ideal gas limit so that one can,
with some justification, identify the corresponding light degrees of freedom.
This is the case for QCD with light quarks as well as in the quenched limit. At
least for temperatures up to a few times Tc the dynamical degrees of freedom
are certainly not just weakly interacting partons.

4.2 Chiral Symmetry Restoration

As chiral symmetry restoration does not lead to a significant change of light
degrees of freedom, it also is not expected to have an appreciable effect on bulk
thermodynamic observables – apart from controlling details of the transition
very close to Tc. In particular, we expect that in the case of a continuous
transition for nf = 2, the chiral order parameter and its derivative, the
chiral susceptibility, show critical behaviour which is characteristic for O(4)
spin models in three dimensions [12]. The expected critical behaviour follows
from standard scaling arguments derived from the singular part of the free
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Fig. 5. The pressure in QCD with different number of degrees of freedom as a func-
tion of temperature. The curve labeled (2+1)-flavour corresponds to a calculation
with two light and a four times heavier strange quark mass [21]

energy density,

fs(t, h) ≡ −T

V
lnZs = b−dfs(bytt, byhh) , (23)

where t = (T − Tc)/Tc ∼ (β − βc) is the reduced temperature, h = m/T ∼
mqNτ the scaled quark mass and b is an arbitrary scale factor. For the chiral
order parameter, 〈ψ̄ψ〉, and the chiral susceptibility, χm, one finds from Eq.
(23),

〈ψ̄ψ〉 = h1/δF (z) (24)

χm(t, h) =
1
δ
h1/δ−1

[
F (z) − z

β
F ′(z)

]
, (25)

with scaling functions F and F ′ that only depend on a specific combination
of the reduced temperature and scaled quark mass, z = th−1/βδ. The critical
exponents β and δ are given in terms of yt and yh as β = (1 − yh)/yt and
δ = yh/(1 − yh). As the t-dependence enters in χm(t, h) only through z one
also deduces that the line of pseudo-critical couplings defined through the
location of the maximum of χm(t, h) at fixed h is described by a universal
scaling function,

tc(h) ≡ zc h
1/βδ . (26)

Although there is ample evidence that the phase transition in 2-flavour QCD
is continuous in the chiral limit, the evidence for the expected O(4) scaling
is, at present, ambiguous. The behaviour of the pseudo-critical couplings is,
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in general, consistent with the expected scaling behaviour. The information
on the magnetic equation of state, Eq. (24), however, seems to depend on the
fermion discretization scheme used to analyze the critical behaviour. While
calculations with Wilson fermions yield almost perfect agreement with the
universal form of the O(4) magnetic equation of state [22], significant devi-
ations have been found in the case of staggered fermions [23]. The failure
of the scaling analysis in the case of staggered fermions is surprising as this
staggered fermion action has a global O(2) symmetry even for finite values
of the lattice cut-off and as the O(4) and O(2) magnetic equations of state
are quite similar [24]. This suggests that finite size effects still play an im-
portant role, which is supported by a recent finite size scaling analysis [25].
In Fig. 6 we show the finite size scaling behaviour of the chiral condensate,
which has been reanalyzed in [25]. It is consistent with O(4) (or O(2)) scaling
behaviour. This aspect, however, clearly needs further studies.

10 50 1001

0.5

1.0

1.5

2.0

L / < >

mqaL
1/ c

Fig. 6. Finite size scaling of the chiral condensate in 2-flavour QCD [25]. Shown
are data from calculations with standard staggered fermions on lattices of size
83 × 4 (circles), 123 × 4 (triangles) and 163 × 4 (squares). The calculations have
been performed with different values of the quark mass at fixed value of the scaling
variable zc corresponding to the pseudo-critical line, see Eq. (26)

The changes of the chiral condensate below Tc and chiral symmetry restora-
tion at Tc will have a strong influence on the light hadron spectrum. At Tc

the pseudo-scalar mesons (pions) will no longer be Goldstone particles, they
turn into massive modes (quasi-particle excitations?) above Tc. Long distance
correlations of the chiral condensate decay exponentially with a characteris-
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tic length scale proportional to the inverse scalar meson mass. A diverging
chiral susceptibility at Tc thus indicates that the scalar meson mass vanishes
at Tc. The mass splitting between parity partners thus will decrease when
the symmetry breaking reduces and finally will become degenerate at Tc.

As indicated above the modifications of the hadron spectrum are re-
flected by the temperature dependence of appropriately chosen susceptibili-
ties, which are the space-time integral over hadronic correlation functions in
a given quantum number channel,

χH =
∫ 1/T

0
dτ
∫

d3r GH(τ, r) , (27)

where the hadronic correlation function GH(τ, r) for mesons is given by,

GH(τ, r) = 〈χ̄(0)ΓHχ(0)χ̄(τ, r)ΓHχ(τ, r)〉 , (28)

and ΓH is an appropriate combination of γ-matrices that projects onto a cho-
sen quantum number channel. In particular, we note that the chiral suscep-
tibility, χm, defined in Eq. (21) is the susceptibility of the scalar correlation
function. These susceptibilities define generalized masses, m−2

H ≡ χH , which
are shown in Fig. 7. They, indeed, show the expected behaviour; scalar (f0)
and pseudo-scalar (π) partners become degenerate at Tc whereas the vector
meson (δ) which is related to the scalar meson through a UA(1) rotation
only gradually approaches the other masses. The axial UA(1) symmetry thus
remains broken at Tc.
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Fig. 7. Temperature dependence of generalized hadron masses extracted from
hadronic susceptibilities. Shown are results from calculations in 2-flavour QCD
performed on lattices of size 83 × 4 with staggered fermions of mass mq = 0.02
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5 Screening at High Temperature –
Short- Versus Long-Distance Physics

Our picture of the thermodynamics in the high temperature phase of QCD
is largely influenced by perturbative concepts – asymptotic freedom and the
screening of electric and magnetic components of the gluon fields. Asymp-
totic freedom suggests that the temperature dependent running coupling,
g(T ), becomes small at high temperatures and eventually vanishes in the
limit T → ∞. This in turn will lead to a separation of the thermal length
scale, 1/T , from the electric, 1/g(T )T , and magnetic, 1/g2(T )T , screening
length scales. The experience gained from lattice calculations in the pure
SU(3) gauge theory, however, suggests that this separation of scales, unfor-
tunately, will set in only at asymptotically large temperatures. For all inter-
esting temperatures reachable in heavy ion experiments or even covering the
temperature interval between the strong and electroweak phase transitions
that occurred in the early universe, the coupling g(T ) is of O(1) and, more-
over, the Debye screening mass is significantly larger than the leading order
perturbative value,

mD =
√

1 +
nf

6
g(T ) T . (29)

In fact, for Tc<∼T<∼100 Tc one finds that mD is still about three times larger
than this leading order value [26]. A consequence of this large value of the
screening mass is that also short distance properties of the plasma are strongly
influenced by non-perturbative screening effects; the Debye screening length,
rD ≡ 1/mD, becomes compatible with the characteristic length scale rSB in
a free gas where the main contribution to the Stefan-Boltzmann law origi-
nates from particles with momenta p ∼ 3T , i.e. rSB ∼ 1/3T , and is of the
same order as the mean separation between partons in a quark-gluon plasma.
We thus must expect that non-perturbative screening effects also have an in-
fluence on bulk thermodynamics properties (pressure, energy density) above
Tc and even up to quite large temperatures. In fact, the calculations of the
pressure and energy density in the SU(3) gauge theory and in QCD with
light quarks, which we are going to discuss in the next section, show that at
temperatures a few times Tc deviations from the ideal gas limit are still too
large to be understood in terms of conventional high temperature perturba-
tion theory, which converges badly at these temperatures just because of the
large contribution arising from Debye screening [30].

The screening of static quark and anti-quark sources is commonly ana-
lyzed in terms of Polyakov-loop correlation functions, which define the heavy
quark free energy introduced in Eq. (15). The leading perturbative contribu-
tion to Fq̄q(r, T ) results from the exchange of two gluons,

Vq̄q(r, T )
T

≡ Fq̄q(r, T ) − F∞
q̄q

T
= − ln

( 〈TrLxTrL†
y〉

|〈L〉|2
)
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= − 1
16

(
g2(T )

3π
1
rT

)2

+ O(g5) . (30)

Higher order contributions will lead to screening of this powerlike large dis-
tance behaviour, 1/rT → exp (−mDr)/rT , and also result in an exponentia-
tion of the leading order contribution. We then may split Fq̄q in contributions
arising from quark anti-quark pairs in singlet (F1) and octet (F8) configura-
tions [3],

e−Fq̄q(r,T )/T =
1
9

e−F1(r,T )/T +
8
9

e−F8(r,T )/T . (31)

In accordance with zero temperature perturbation theory the singlet free en-
ergy is attractive whereas the octet free energy is repulsive. Their relative
strength is such that it leads to a cancellation of the leading O(g2) contribu-
tions to the colour averaged heavy quark free energy Fq̄q. From Eq. (31) it
is, however, apparent that the cancellation of singlet and octet contributions
only occurs at large distances. At short distances the contribution from the
attractive singlet channel will dominate the heavy quark free energy,

Fq̄q(r, T )
T

=
F1(r, T )

T
+ const.

= −g2(T )
3π

1
rT

+ const. for rT << 1 . (32)

In order to eliminate the subleading power-like behaviour at large distances
we show in Fig. 8 (rT )2 Vq̄q(r, T )/T calculated for the SU(3) gauge theory. As
can be seen, the change from the Coulomb-like behaviour at short distances
to the exponential screening at large distances can be well localized. For
Tc ≤ T<∼2Tc it occurs already for rT  0.2 or r  0.15 (Tc/T ) fm and shifts
slightly to smaller rT with increasing temperature. A consequence of this
efficient screening at short distances is that even heavy quark bound states
get destroyed close to Tc in the plasma phase (J/ψ-suppression [28]).

The perturbative analysis of the heavy quark free energy also suggests
that for fixed rT the only temperature dependence of V (r, T )/T arises from
the running of the coupling g(T ). The rapid change of V (r, T )/T at fixed rT
which is apparent in Fig. 8 thus also suggests that for temperatures T<∼3Tc

the coupling g(T ) varies much more rapidly than the asymptotically expected
logarithmic running with T .

We thus conclude that non-perturbative screening effects are important
for the thermodynamics in the plasma phase also for short distance observ-
ables which are sensitive to the physics at distances r>∼1/5T . The strong
temperature dependence observed for T<∼3Tc, moreover, suggests that the
system cannot be described at a weakly coupled, asymptotically free plasma
at these temperatures. These general features will carry over to the tempera-
ture dependence of the QCD equation of state which we are going to discuss
in the next section.
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size 323 × 8 (filled symbols) and 323 × 16 (open symbols) [27]

6 The QCD Equation of State

The most fundamental quantity in equilibrium thermodynamics is, of course,
the partition function itself, or the free energy density,

f = −T

V
lnZ(T, V ) . (33)

All basic bulk thermodynamic observables can be derived from the free energy
density. In the thermodynamic limit we obtain directly the pressure, p = −f
and subsequently also other quantities like the energy (ε) and entropy (s)
densities or the velocity of sound (cs),

ε− 3p
T 4 = T

d
dT

( p

T 4

)
,

s

T 3 =
ε+ p

T 4 , c2s =
dp
dε

. (34)

In the limit of infinite temperature asymptotic freedom suggests that these
observables approach the ideal gas limit for a gas of free quarks and gluons,
ε = 3p = −3f with p/T 4 given by Eq. (22). Deviations from this ideal gas
values have been studied in high temperature perturbation theory. However,
it was well-known that this expansion is no longer calculable perturbatively
at O(g6) [29]. By now all calculable orders up to O(g5 ln g) have been calcu-
lated [30]. Unfortunately it turned out that the information gained from this
expansion is rather limited. The expansion shows bad convergence behaviour
and suggests that it is of use only at temperatures several orders of mag-
nitude larger than the QCD transition temperature. In analytic approaches
one thus has to go beyond perturbation theory which currently is being at-
tempted by either using hard thermal loop resummation techniques [31,32]
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or perturbative dimensional reduction combined with numerical simulations
of the resulting effective 3-dimensional theory [33].

In order to make use of the basic thermodynamic relations, Eqs. (33)
and (34), in numerical calculations on the lattice we have to go through an
additional intermediate step. The free energy density itself is not directly
accessible in Monte Carlo calculations; e.g., only expectation values can be
calculated easily. One thus proceeds by calculating differences of the free
energy density at two different temperatures. These are obtained by taking
a suitable derivative of lnZ followed by an integration, e.g.,

f

T 4

∣∣∣∣T
To

= − 1
V

∫ T

To

dx
∂x−3 lnZ(x, V )

∂x
. (35)

This ansatz readily translates to the lattice. Taking derivatives with respect
to the gauge coupling, β = 6/g2, rather than the temperature as was done in
Eq. (35), we obtain expectation values of the Euclidean action which can be
integrated again to give the free energy density,

f

T 4

∣∣∣∣β
βo

= N4
τ

∫ β

βo

dβ′(〈S̃〉 − 〈S̃〉T=0
)

. (36)

Here,

〈S̃〉 = − 1
N3

σNτ

∂ lnZ
∂β

(37)

is calculated on a lattice of size N3
σ ×Nτ and 〈...〉T=0 denotes expectation val-

ues calculated on zero temperature lattices, which usually are approximated
by symmetric lattices with Nτ ≡ Nσ. The lower integration limit is chosen
at low temperatures so that f/T 4

o is small and may be ignored7.
A little bit more involved is the calculation of the energy density as we

have to take derivatives with respect to the temperature, T = 1/Nτa. On
lattices with fixed temporal extent Nτ we rewrite this in terms of a derivative
with respect to the lattice spacing a which in turn is controlled through the
bare couplings of the QCD Lagrangian, a ≡ a(β,mq). We thus find for the
case of nf degenerate quark flavours of mass mq

(ε− 3p)
T 4 = N4

τ

[(
dβ(a)
d ln a

)(
〈S̃〉 − 〈S̃〉T=0

)
7 In the gluonic sector the relevant degrees of freedom at low temperature are

glueballs. Even the lightest ones calculated on the lattice have large masses,
mG � 1.5 GeV. The free energy density thus is exponentially suppressed already
close to Tc. In QCD with light quarks the dominant contribution to the free
energy density comes from pions. As long as we are dealing with massive quarks
also this contribution gets suppressed exponentially. However, in the massless
limit clearly some care has to be taken with the normalization of the free energy
density.
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−
(

dmq(a)
d ln a

)(
〈χ̄χ〉 − 〈χ̄χ〉T=0

)]
. (38)

An evaluation of the energy density thus, e.g., requires the knowledge of two
β-functions. These may be determined by calculating two physical observ-
ables in lattice units for given values of β and mq; for instance, the string
tension, σa2 and a ratio of hadron masses, mPS/mV ≡ mπ/mρ. These quan-
tities will have to be calculated at zero temperature which then also allows
to determine a temperature scale in physical units as given in Eq. (12). This
forms the basis for a calculation of the pressure as shown already in Fig. 5.

The numerical calculation of thermodynamic quantities is done on finite
lattices with spatial extent Nσ and temporal extent Nτ . In order to perform
calculations close to the thermodynamic limit we want to use a large spatial
extent of the lattice. In general it has been found that lattices with Nσ>∼4Nτ

provide a good approximation to the infinite volume limit. In addition, we
want to get close to the continuum limit in order to eliminate discretization
errors. Taking the continuum limit at fixed temperature requires to perform
the limit Nτ → ∞. In order to perform this limit in a controlled way we have
to analyze in how far lattice calculations of bulk thermodynamic observables
are influenced by the introduction of a finite lattice cut-off, i.e. we have to
understand the systematic cut-off effects introduced through the non-zero
lattice spacing. These cut-off effects are largest in the high (infinite) tem-
perature limit which can be analyzed analytically in weak coupling lattice
perturbation theory. We thus will discuss this limiting case first.

6.1 High-Temperature Limit of the QCD Equation of State

In the high temperature limit bulk thermodynamic observables are expected
to approach their free gas values (Stefan-Boltzmann constants). In this limit
cut-off effects in the pressure and in turn also in the energy density (εSB =
3 pSB) become most significant. Momenta of the order of the temperature,
i.e. short distance properties, dominate the ideal gas behaviour.

As discussed in Section 2 the most straightforward lattice representation
of the QCD partition function in terms of the standard Wilson gauge and
fermion actions as well as the staggered fermion action leads to a systematic
O(a2) cut-off dependence of physical observables. At finite temperature the
temperature itself sets the scale for these O(a2) effects, which thus give rise
to O((aT )2 ≡ 1/N2

τ ) deviations of, e.g., the pressure from the continuum
Stefan-Boltzmann value,

p

T 4

∣∣∣∣
Nτ

=
p

T 4

∣∣∣∣
∞

+
c

N2
τ

+ O(N−4
τ ) . (39)

One can eliminate these leading order cut-off effects by using improved actions
which greatly reduces the cut-off dependence in the ideal gas limit. In the
Appendix we discuss a specific set of improved gauge and fermion actions. In
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the gauge sector one may in addition to the standard Wilson plaquette term
((1 × 1)-action) also include planar 6-link terms in the action. This is done
in the O(a2) tree level improved (1 × 2)-action, which eliminates the leading
order cut-off dependence completely. On lattices with temporal extent Nτ

one finds for the deviation of the gluonic part of the pressure [34],

pG(Nτ )
pG,SB

=

{
1 + 8

21

(
π

Nτ

)2 + 5
21

(
π

Nτ

)4 + O(N−6
τ

)
, (1 × 1)-action

1 + O(N−4
τ

)
, (1 × 2)-action

(40)

A similar reduction of cut-off effects can be achieved in the fermion sector
through the use of improved actions. So far, however, improved fermion ac-
tions, which reduce or eliminate the leading order cut-off effects have only
been constructed in the staggered fermion formulation. The Naik action [35],
which in addition to the ordinary one-link term in the staggered action also
includes straight three-link terms, completely eliminates the O(N−2

τ ) errors
on the tree level (ideal gas limit). The p4-action discussed in the Appendix
does not eliminate this correction completely. It, however, reduces its contri-
bution drastically over those present in the standard staggered action8,

pF(Nτ )
pF,SB

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + 1.57
(

π
Nτ

)2 + 8.47
(

π
Nτ

)4+ 1-link standard
O(N−6

τ

)
, staggered action,

1 + 0.007
(

π
Nτ

)2 + 1.07
(

π
Nτ

)4+
O(N−6

τ

)
p4-action,

(41)

as can be seen in Fig. 9. Moreover, the p4-action has the advantage that it
improves the rotational symmetry of the fermion propagator which in turn
also reduces violations of rotational symmetry in the heavy quark potential.

Using the tree level improved gauge action in combination with the im-
proved staggered fermion action in numerical simulations at finite tempera-
ture it is possible to perform calculations with small systematic cut-off errors
already on lattices with small temporal extent, e.g., Nτ = 4 or 6. In actual
calculations performed with various actions in the pure gauge sector one finds
that for temperatures T<∼5Tc the cut-off dependence of thermodynamic shows
the pattern predicted by the infinite temperature perturbative calculation.
The absolute magnitude of the cut-off effects, however, is smaller by about
a factor of two. This, of course, is reassuring for the numerical calculations
performed with light quarks, where such a detailed systematic study of the
cut-off dependence at present does not exist.

6.2 Thermodynamics of the SU(3) Gauge Theory

Before entering a discussion of bulk thermodynamics in two and three flavour
QCD it is worthwhile to discuss some results on the equation of state in the
8 We quote here only an approximation to the Nτ -dependence obtained from a fit

in the interval 10 ≤ Nτ ≤ 16.
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Fig. 9. Cut-off dependence of the ideal gas pressure for the SU(3) gauge theory
(left) and several staggered fermion actions (right). These actions are defined in the
Appendix. Cut-off effects for the Wilson fermion action are compatible with those
of the standard staggered fermion action

Fig. 10. Pressure of the SU(3) gauge theory calculated on lattices with different
temporal extent and extrapolated to the continuum limit. Shown are results from
calculations with the standard Wilson (1 × 1)-action [36] and several improved
actions [38,39], which are defined in the Appendix. The broad band shows the
approximately self-consistent HTL calculation of [41]

heavy quark mass limit of QCD – the SU(3) gauge theory. In this case the
temperature dependence of the pressure and energy density has been studied
in great detail, calculations with the standard action [36] and various im-
proved actions [37,38,39] have been performed, the cut-off dependence has
explicitly been analyzed through calculations on lattices with varying tem-
poral extent Nτ and results have been extrapolated to the continuum limit.
In Fig. 10 we show some results for the pressure obtained from such detailed
analyzes with different actions [36,38,39].
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This figure shows the basic features of the temperature dependence of bulk
thermodynamic quantities in QCD, which also carry over to the case of QCD
with light quarks. The pressure stays small for almost all temperatures below
Tc; this is expected, as the only degrees of freedom in the low temperature
phase are glueballs which are rather heavy and thus lead to an exponential
suppression of pressure and energy density at low temperature. Above Tc the
pressure rises rapidly and reaches about 70% of the asymptotic ideal gas value
at T = 2 Tc. For even larger temperatures the approach to this limiting value
proceeds rather slowly. In fact, even at T  4 Tc deviations from the ideal
gas value are larger than 10%. This is too much to be understood in terms of
weakly interacting gluons as they are described by ordinary high temperature
perturbation theory [30]. Even at these high temperatures non-perturbative
effects have to be taken into account which may be described in terms of
interactions among quasi-particles [31,40]. In Fig. 10 we show the result of a
self-consistent HTL resummation [41], which leads to good agreement with
the lattice calculations for T>∼3Tc. Other approaches [33,40] reach a similarly
good agreement in the high temperature regime.

Compared to the pressure the energy density rises much more rapidly in
the vicinity of Tc. In fact, as the transition is first order in the SU(3) gauge
theory the energy density is discontinuous at Tc with a latent heat of about
1.5T 4

c [42]. In Fig. 11 we show results for the energy density, entropy density
and the pressure obtained from calculations with the Wilson action which
have been extrapolated to the continuum limit [36].

The delayed rise of the pressure compared to that of the energy density
has consequences for the velocity of sound in the QCD plasma in the vicinity
of Tc. It is substantially smaller than in the high temperature ideal gas limit.

6.3 Flavour Dependence of the QCD Equation of State

As shown in Eq. (36) the pressure in QCD with light quarks can be calcu-
lated along the same line as in the pure gauge sector. Unlike in the pure
gauge case it, however, will be difficult to perform calculations on lattices
with large temporal extent. In fact, at present all calculations of the equa-
tion of state are restricted to lattices with Nτ = 4 and 6 [21,43,44]. The
use of an improved fermion action thus seems to be even more important
in this case. Of course, an additional problem arises from insufficient chiral
properties of staggered and Wilson fermion actions. This will mainly be of
importance in the low temperature phase and in the vicinity of the transition
temperature. The continuum extrapolation thus will be more involved in the
case of QCD with light quarks than in the pure gauge theory and we will have
to perform calculations closer to the continuum limit. Nonetheless, in partic-
ular for small number of flavours, we may expect that the flavour symmetry
breaking only has a small effect on the overall magnitude of bulk thermo-
dynamic observables. After all, for nf = 2, the pressure of an ideal massless
pion gas contributes less than 10% of that of an ideal quark-gluon gas in the
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Fig. 11. Energy density, entropy density and pressure of the SU(3) gauge theory
calculated on lattices with different temporal extent and extrapolated to the con-
tinuum limit. The dashed band indicates the size of the latent heat gap in energy
and entropy density

high temperature limit. For our discussion of bulk thermodynamic observ-
ables the main source for lattice artifacts thus still seems to arise from the
short distance cut-off effects, which we have to control. Additional confidence
in the numerical results can be gained by comparing simulations performed
with different fermion actions.

The importance of an improved lattice action, which leads to small cut-
off errors at least in the high temperature ideal gas limit is apparent from
Fig. 12, where we compare the results of a calculation of the pressure in
2-flavour QCD performed with unimproved gauge and staggered fermion ac-
tions [43] and the RG-improved gauge and clover improved Wilson action [44]
with results obtained with the p4-action discussed in the Appendix. At tem-
peratures above T  2 Tc these actions qualitatively reproduce the cut-off
effects calculated analytically in the infinite temperature limit (see Section
6.1). In particular, it is evident that also the Clover improved Wilson action
leads to an overshooting of the continuum ideal gas limit. This is expected as
the Clover term in the Wilson action does eliminate O(ag2) cut-off effects but
does not improve the high temperature ideal gas limit, which is O(g0). The
clover improved Wilson action thus leads to the same large O(a2) cut-off ef-
fects as the unimproved Wilson action. The influence of cut-off effects in bulk
thermodynamic observables thus is similar in calculations with light quarks
and in the SU(3) gauge theory. This observation may also help to estimate
the cut-off effects still present in current calculations with light quarks. In
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staggered fermion actions (open symbols) [43], RG-improved gauge and clover im-
proved Wilson action (full symbols) [44] and the p4-action (improved gauge and
improved staggered fermions, see Appendix) (full line) [21]. The grey line estimates
the results in the continuum limit as described in the text. The horizontal lines to
the right and left show the Stefan-Boltzmann values for an ideal pion gas and a
free quark-gluon gas, respectively

particular, we know from the analysis performed in the pure gauge sector
that in the interesting temperature regime of a few times Tc the cut-off de-
pendence seems to be about a factor two smaller than calculated analytically
in the infinite temperature limit; we may expect that this carries over to the
case of QCD with light quarks. This is the basis for the estimated continuum
extrapolation of the nf = 2 results shown as a dashed band in Fig. 12.

In Fig. 5 we have already shown results for the pressure calculated in
QCD with different number of flavours. This figure clearly shows that the
transition region shifts to smaller temperatures as the number of degrees of
freedom is increased. Such a conclusion, of course, requires the determination
of a temperature scale that is common to all QCD-like theories which have a
particle content different from that realized in nature. We have determined
this temperature scale by assuming that the string tension is flavour and
quark mass independent. This assumption is supported by the observation
that already in the heavy quark mass limit the string tension calculated in
units of quenched hadron masses, e.g., mρ/

√
σ = 1.81 (4) [45], is in good

agreement with values required in QCD phenomenology,
√
σ  425 MeV.

At high temperature the magnitude of p/T 4 clearly reflects the change in
the number of light degrees of freedom present in the ideal gas limit. When
we rescale the pressure by the corresponding ideal gas values it becomes,
however, apparent that the overall pattern of the temperature dependence of
p/T 4 is quite similar in all cases. This is shown in Fig. 13. In particular, when
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one takes into account that a proper continuum extrapolation in QCD with
light quarks is still missing this agreement achieved with improved staggered
fermions is quite remarkable.
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Fig. 13. The pressure in units of the ideal gas pressure for the SU(3) gauge theory
and QCD with various number of flavours. The latter calculations have been per-
formed on lattices with temporal extent Nτ = 4 using the p4-action defined in the
Appendix. Results are not yet extrapolated to the continuum limit

We also note that the pressure at low temperature is enhanced in QCD
with light quarks compared to the pure gauge case. This is an indication for
the contribution of hadronic states, which are significantly lighter than the
heavy glueballs of the SU(3) gauge theory.

This behaviour is even more clearly visible in the behaviour of the energy
density which is shown in Fig. 14, where we show results obtained with im-
proved staggered9 and Wilson [44] fermions. We note that these calculations
yield consistent estimates for the energy density at Tc,

εc  (6 ± 2)T 4
c . (42)

This estimate for εc/T 4
c , which also is consistent with results obtained

from calculations with a standard staggered fermion action [43], is an order of
magnitude larger than the critical value on the hadronic side of the transition
in the pure gauge theory (see Fig. 11). It is, however, interesting to note
that when we convert this result for εc in physical units, [MeV/fm3], this
difference gets to a large extent compensated by the shift in Tc to smaller
9 The figure for staggered fermions is based on data from Ref. [21]. Here a contri-

bution to ε/T 4 which is proportional to the bare quark mass and vanishes in the
chiral limit is not taken into account.
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values. When going from the infinite quark mass limit to the light quark mass
regime the QCD transition thus seems to take place at compatible values of
the energy density, εc  (0.5 − 1)GeV/fm3. The largest uncertainty on this
number at present arises from uncertainties on the value of Tc (see next
section). However, also the magnitude of εc/T 4

c still has to be determined
more accurately. Here two competing effects will be relevant. On the one
hand we expect εc/T 4

c to increase with decreasing quark masses, i.e. closer to
the chiral limit. On the other hand, it is likely that finite volume effects are
similar to those in the pure gauge sector, which suggests that εc/T 4

c will still
decrease closer to the thermodynamic limit, i.e. for Nσ → ∞.
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In the 2-flavour calculations performed with improved Wilson fermions
[44] the pressure and energy density have been calculated for several values
of the quark mass, which corresponds to different ratios of the pseudo-scalar
to vector meson mass mPS/mV . The results show no significant quark mass
dependence up to mPS/mV  0.9. This meson mass ratio corresponds to
pseudo-scalar meson masses of about 1.5 GeV, which is somewhat larger
than the Φ-meson mass. This suggests that the corresponding quark mass
is compatible with that of the strange quark. The approximate quark mass
independence of the equation of state observed in the high temperature phase
thus is consistent with our expectation that quark mass effects should become
significant only when the quark masses get larger than the temperature.

7 The Critical Temperature of the QCD Transition

As discussed in Section 3 the transition to the high temperature phase is
continuous and non-singular for a large range of quark masses. Nonethe-
less, for all quark masses this transition proceeds rather rapidly in a small
temperature interval. A definite transition point thus can be identified, for
instance through the location of peaks in the susceptibilities of the Polyakov
loop or the chiral condensate defined in Eq. (21). For a given value of the
quark mass one thus determines pseudo-critical couplings, βpc(mq), on a lat-
tice with temporal extent Nτ . An additional calculation of an experimentally
or phenomenologically known observable at zero temperature, e.g., a hadron
mass or the string tension, is still needed to determine the transition tem-
perature from Eq. (12). In the pure gauge theory the transition temperature
again has been analyzed in great detail and the influence of cut-off effects
has been examined through calculations on different size lattices and with
different actions. From this one finds for the critical temperature of the first
order phase transition in the pure SU(3) gauge theory,

SU(3) gauge theory : Tc/
√
σ = 0.637 ± 0.005

Tc = (271 ± 2) MeV (43)

Already the early calculations for the transition temperature with light
quarks [46,47] indicated that the inclusion of light quarks leads to a signif-
icant decrease of the transition temperature. However, these early calcula-
tions, which have been performed with standard Wilson [46] and staggered
[47] fermion actions, also led to significant discrepancies in the results for
Tc as well as the order of the transition. These differences strongly dimin-
ished in the newer calculations which are based on improved Wilson fermions
(Clover action) [47,48,49], domain wall fermions [50] as well as improved
staggered fermions (p4-action) [19]. A compilation of these newer results is
shown in Fig. 15 for various values of the quark masses. In order to com-
pare calculations performed with different actions the results are presented
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in terms of a physical observable, the meson mass ratio mPS/mV . In Fig. 15a
we show Tc/mV obtained for 2-flavour QCD while Fig. 15b gives a com-
parison of results obtained with improved staggered fermions [19] for 2 and
3-flavour QCD. Also shown there is a result for the case of (2+1)-flavour
QCD, i.e. for two light and one heavier quark flavour degree of freedom.
Unfortunately the quark masses in this latter case are still too large to be
compared directly with the situation realized in nature. We note however,
that the results obtained so far suggest that the transition temperature in
(2+1)-flavour QCD is close to that of 2-flavour QCD. The 3-flavour theory,
on the other hand, leads to consistently smaller values of the critical tempera-
ture, Tc(nf = 2)−Tc(nf = 3)  20 MeV. The extrapolation of the transition
temperatures to the chiral limit gave

2 − flavour QCD : Tc =

⎧⎪⎨⎪⎩
(171 ± 4) MeV, clover-improved Wilson

fermions [48]
(173 ± 8) MeV, improved staggered

fermions [19]
3 − flavour QCD : Tc = (154 ± 8) MeV, improved staggered

fermions [19]

Here mρ has been used to set the scale for Tc. Although the agreement be-
tween results obtained with Wilson and staggered fermions is striking, one
should bear in mind that all these results have been obtained on lattice with
temporal extent Nτ = 4, i.e. at rather large lattice spacing, a  0.3 fm.
Moreover, there are uncertainties involved in the ansatz used to extrapolate
to the chiral limit. We thus estimate that the systematic error on the value
of Tc/mρ still is of similar magnitude as the purely statistical error quoted
above.

We note from Fig. 15 that Tc/mV drops with increasing ratio mPS/mV ,
i.e. with increasing quark mass. This may not be too surprising as mV , of
course, does not take on the physical ρ-meson mass value as long as mPS/mV

did not reach is physical value (vertical line in Fig. 15a). In fact, we know that
Tc/mV will approach zero for mPS/mV = 1 as Tc will stay finite and take on
the value calculated in the pure SU(3) gauge theory whereas mV will diverge
in the heavy quark mass limit. Fig. 15 thus does not yet allow to quantify
how Tc depends on the quark mass. A simple percolation picture for the
QCD transition would suggest that Tc(mq) or better Tc(mPS) will increase
with increasing mq; with increasing mq also the hadron masses increase and
it becomes more difficult to excite the low lying hadronic states. It thus
becomes more difficult to create a sufficiently high particle/energy density in
the hadronic phase that can trigger a phase (percolation) transition. Such a
picture also follows from chiral model calculations [51].

As argued previously we should express Tc in units of an observable, which
itself is not dependent on mq; the string tension (or also a quenched hadron
mass) seems to be suitable for this purpose. In fact, this is what tacitly has
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Fig. 15. Transition temperatures in units of mV . The upper figure shows a col-
lection of results obtained for 2-flavour QCD with various fermion actions while
in the lower figure we compare results obtained in 2 and 3-flavour QCD with the
p4-action described in the Appendix. All results are from simulations on lattices
with temporal extent Nτ = 4. The large dot drawn for mPS/mV = 0 indicates the
result of chiral extrapolations based on calculations with improved Wilson [48] as
well as improved staggered [19] fermions. The vertical line in the upper figure shows
the location of the physical limit, mPS ≡ mπ = 140 MeV

been assumed when one converts the critical temperature of the SU(3) gauge
theory Tc/

√
σ  0.63 into physical units as has also been done in Eq. (43).

To quantify the quark mass dependence of the transition temperature one
may express Tc in units of

√
σ. This ratio is shown in Fig. 16 as a function

of mPS/
√
σ. As can be seen the transition temperature starts deviating from

the quenched values for mPS <∼ (6 − 7)
√
σ  2.5 GeV. We also note that the

dependence of Tc on mPS/
√
σ is almost linear in the entire mass interval.

Such a behaviour might, in fact, be expected for light quarks in the vicinity
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Fig. 16. The transition temperature in 2 (filled squares) and 3 (circles) flavour
QCD versus mPS/

√
σ using an improved staggered fermion action (p4-action). Also

shown are results for 2-flavour QCD obtained with the standard staggered fermion
action (open squares). The dashed band indicates the uncertainty on Tc/

√
σ in the

quenched limit. The straight line is the fit given in Eq. (45)

of a 2nd order chiral transition where the dependence of the pseudo-critical
temperature on the mass of the Goldstone-particle follows from the scaling
relation, Eq. (26),

Tc(mπ) − Tc(0) ∼ m2/βδ
π . (44)

For 2-flavour QCD the critical indices are expected to belong to the univer-
sality class of 3-d, O(4) symmetric spin models and one thus would indeed
expect 1/βδ = 0.55. However, this clearly cannot be the origin of the quasi
linear behaviour which is observed for rather large hadron masses and seems
to be independent of nf . Moreover, unlike in chiral models [51] the depen-
dence of Tc on mPS turns out to be rather weak. The line shown in Fig. 16
is a fit to the 3-flavour data, which gave(

Tc√
σ

)
mP S/

√
σ

=
(
Tc√
σ

)
0

+ 0.04(1)
(
mPS√
σ

)
. (45)

It thus seems that the transition temperature does not react strongly on
changes of the lightest hadron masses. This favours the interpretation that
the contributions of heavy resonance masses are equally important for the
occurrence of the transition. In fact, this also can explain why the transition
still sets in at quite low temperatures even when all hadron masses, including
the pseudo-scalars, attain masses of the order of 1 GeV or more. Such an
interpretation also is consistent with the weak quark mass dependence of the
critical energy density we found from the analysis of the QCD equation of
state in the previous section.
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For the quark masses currently used in lattice calculations a resonance gas
model combined with a percolation criterion thus provides an appropriate to
describe the thermodynamics close to Tc. It remains to be seen whether the
role of the light meson sector becomes more dominant when we get closer to
the chiral limit.

8 Finite Density QCD

Finite density calculations in QCD are affected by the well known sign prob-
lem, i.e. the fermion determinant appearing in the QCD partition function,
Eq. (11), becomes complex for non-zero values of the chemical potential μ
and thus prohibits the use of conventional numerical algorithms. The most
detailed studies of this problem have so far been performed using the Glasgow
algorithm [52], which is based on a fugacity expansion of the grand canonical
partition function at non-zero μ,

ZGC(μ/T, T, V ) =
αV∑

B=−αV

zBZB(T, V ) , (46)

where z = exp (μ/T ) is the fugacity and ZB are the canonical partition func-
tions for fixed quark number B; α = 3, 6 for one species of staggered or
Wilson fermions, respectively. After introducing a complex chemical poten-
tial in ZGC the canonical partition functions can be obtained via a Fourier
transformation10,

ZB(T, V ) =
1
2π

∫ 2π

0
dφ eiφB ZGC(iφ, T, V ) (47)

≡
∫ ∏

nν

ΔUn,νaBe−βSG , (48)

with

aB =
1
2π

∫ 2π

0
dφ eiφB (detQF (mq, iφ))nf /4 . (49)

One thus may evaluate the canonical partition functions as expectation values
with respect to a trial partition function that can be handled numerically, for
instance the partition function of the pure SU(3) gauge theory,

ZGC(μ/T, T, V ) = ZSU(3)

αV∑
B=−αV

zB〈aB〉SU(3) . (50)

10 The use of this ansatz for the calculation of canonical partition functions as
expansion coefficients for ZGC has been discussed in [55,56]. A new approach has
been suggested recently, which combines simulations with imaginary chemical
potential with an analytic continuation based on the Ferrenberg-Swendsen multi-
histogram method [57].
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However, this approach so far did not overcome the severe numerical diffi-
culties. Like other approaches it suffers from the problem that expectation
values have to be calculated with respect to another ensemble so that the im-
portance sampling which is at the heart of every numerical approach samples
the wrong region of phase space and thus may become quite inefficient.

It thus may be helpful to approach the finite density problems from an-
other perspective. A reformulation of the original ansatz may lead to a repre-
sentation of the partition function which, in the ideal case, would require the
averaging over configurations with strictly positive weights only, or at least
would lead to a strong reduction of configurations with negative weights.

An alternative formulation of finite density QCD is given in terms of
canonical rather than grand canonical partition functions [53], i.e. rather
than introducing a non-zero chemical potential through which the number
density is controlled one introduces directly a non-zero baryon number (or
quark number B) through Eq. (47) from which the baryon number density
on lattices of size N3

σ × Nτ is obtained as nB/T
3 = B

3 (Nτ/Nσ)3. Also this
formulation is by no means easy to use in general, i.e. for QCD with light
quarks. In particular, it also still suffers from a sign problem. It, however,
leads to a quite natural and useful formulation of the quenched limit of QCD
at non-zero density [54] which may be a good starting point for generalizing
this approach to finite values of the quark mass. In the following we briefly
outline the basic ideas of this approach.

8.1 Quenched Limit of Finite Density QCD

It had been noticed early that the straightforward replacement of the fermion
determinant by a constant does not lead to a meaningful static limit of QCD
[58]. In fact, this simple replacement corresponds to the static limit fermion
flavours carrying baryon number B and −B, respectively [59]. This should
not be too surprising. When one starts with QCD at a non-zero baryon
number and takes the limit of infinitely heavy quarks something should be left
over from the determinant that represents the objects that carry the baryon
number. In the canonical formulation this becomes obvious. For mq → ∞ one
ends up with a partition function, which for baryon number B/3 still includes
the sum over products of B Polyakov loops, i.e. the static quark propagators
which carry the baryon number [54]. This limit also has some analogy in
the grand canonical formulation where the coupled limit mq, μ → ∞ with
exp (μ)/2mq kept fixed has been performed [60,61]11.

As the baryon number is carried by the rather heavy nucleons in the con-
fined phase of QCD we may expect that it is quite reasonable to approximate
11 This is a well known limit in statistical physics. When deriving the non-relativistic

gas limit from a relativistic gas of particles with mass m̄, the rest mass is splitted
off from the chemical potential, μ ≡ μnr +m̄, in order to cancel the corresponding
rest mass term in the particle energies. On the lattice m̄ = ln(2mq) for large bare
quark masses.
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them by static objects. This may already provide valuable insight into the
thermodynamics of QCD at non-zero baryon number density already from
quenched QCD.

In the canonical approach simulations at non-zero B can be performed on
relatively large lattices and the use of baryon number densities up to a few
times nuclear matter density is possible [54,62]. The simulations performed
so far in the static limit show the basic features expected at non-zero den-
sity. As can be seen from the behaviour of the Polyakov loop expectation
value shown in Fig. 17 the transition region gets shifted to smaller tempera-
tures (smaller coupling β). The broadening of the transition region suggests a
smooth crossover behaviour at non-zero density. However, in a canonical sim-
ulation it also may indicate the presence of a region of coexisting phases and
thus would signal the existence of a 1st order phase transition. This deserves
further analysis.
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Fig. 17. Polyakov loop expectation value (left) calculated on N3
σ ×2 and the heavy

quark potential (right) calculated on 163 × 4 lattices in quenched QCD at zero and
non-zero baryon number, B/3

Even more interesting is the behaviour of the heavy quark free energy in
the low temperature phase. As shown in the right frame of Fig. 17 the free
energy does get screened at non-vanishing number density. The influence of
static quark sources on the heavy quark free energy is similar in magnitude
to the screening (string breaking) seen in QCD simulations at finite tempera-
ture in the low temperature hadronic phase (see Fig. 4). At non-zero baryon
number density we thus may expect similarly strong medium effects as at
finite temperature.

9 Conclusions

We have given a brief introduction into the lattice formulation of QCD ther-
modynamics and presented a few of the basic results on the QCD equation
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of state, the critical parameters for the transition to the QCD plasma phase
and properties of this new phase of matter.

The thermodynamics of the heavy quark mass limit is quite well under
control; we know the equation of state and the transition temperature with
an accuracy of a few percent. We now also have reached a first quantitative
understanding of QCD with light quarks, which at present still corresponds
to a world in which the pion would have a mass of about (300-500) MeV.
This still is too heavy to become sensitive to details of the physics of chiral
symmetry breaking. Nonetheless, lattice calculations performed with different
lattice fermion formulations start to produce a consistent picture for the
quark mass dependence of the equation of state as well as the influence of
the number of light flavours on the phase transition and they yield compatible
results for the transition temperature. In these calculations we learn to control
the systematic errors inherent to lattice calculations performed with a finite
lattice cut-off and start getting control over the effects resulting from the
explicit breaking of continuum symmetries in the fermion sector. With these
experience at hand we soon will be able to study the thermodynamics of
QCD with a realistic spectrum of light up and down quarks and a heavier
strange quark.
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Appendix: Improved Gauge and Fermion Actions

Improved Gauge Actions

When formulating a discretized version of QCD one has a great deal of free-
dom in choosing a lattice action. Different formulations may differ by sub-
leading powers of the lattice cut-off, which vanish in the continuum limit.
This has, for instance, been used by Symanzik to systematically improve
scalar field theories [63] and has then been applied to lattice regularized
SU(N) gauge theories [64,65]. In addition to the elementary plaquette term
appearing in the standard Wilson formulation of lattice QCD larger loops
can be added to the action in such a way that the leading O(a2g0) deviations
from the continuum formulation are eliminated and corrections only start in
O(a4g0, a2g2). A simple class of improved actions is, for instance, obtained by
adding planar loops of size (k, l) to the standard Wilson action (one-plaquette
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action) [34]. The simplest extension of the Wilson one-plaquette action thus
is to include an additional contribution from a planar six-link Wilson loop,

W (1,2)
n,μν = 1 − 1

6
Re
(

+
)

n,μν

. (51)

Combining this six-link contribution with the four-link plaquette term in a
suitable way one can eliminate the leading O(a2) corrections and arrives at
a formulation that reproduces the continuum action up to O(a4) corrections
at least on the classical level at O(g0),

βSG = β
∑

n
0≤μ<ν≤3

c1,1W
(1,1)
n,μν + c1,2W

(1,2)
n,μν , (52)

with c1,1 = 5/3 and c1,2 = −1/6. We call this action the tree-level improved
(1 × 2)-action. It may be further improved perturbatively by eliminating
the leading lattice cut-off effects also at O(g2), i.e. ci,j ⇒ c

(0)
i,j + g2c

(1)
i,j , or

by introducing non-perturbative modifications. A well-studied gluon action
with non-perturbative corrections is the RG-improved action introduced by
Y. Iwasaki [66]. This RG-action also has the structure of Eq. (52) but with
coefficients cRG

1,1 = 3.648 and cRG
1,2 = −0.662. Of course, this action will still

lead to O(a2) corrections in the ideal gas limit. The Nτ -dependence of cut-off
effects resulting from these actions is shown in Fig. 9. In Section 6 we also
show some results from calculations with a tadpole improved action [67]. This
non-perturbative improvement amounts to ctad1,1 ≡ c1,1 and a replacement of
c1,2 by ctad1,2 = 1/6u2

0(β) where,

u4
0 =

1
6N3

σNτ
〈
∑

x,ν>μ

(1 −W 1,1
μ,ν(x)) 〉 . (53)

In the ideal gas limit this action still has the same cut-off dependence as the
tree-level improved (1 × 2) action.

Improved Staggered Fermion Actions

When discussing the improvement of fermion actions there are at least two
aspects one has to take into account. On the one hand one faces problems
with cut-off effects similar to the pure gauge sector; on the tree level the
standard Wilson and Kogut-Susskind discretization schemes introduce O(a2)
which will influence the short distance properties of physical observables.
On the other hand also the global symmetries of the continuum Lagrangian
are explicitly broken at non-zero lattice spacing. This influences the long
distance properties of these actions, e.g., the light particle sector (Goldstone
modes) of the lattice regularized theory. Both aspects are of importance for
thermodynamic calculations. The latter problem certainly is of importance
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in the vicinity of the QCD phase transition while the former will show up
when analyzing the high temperature limit of the equation of state.

In the case of staggered fermions both problems have been addressed and
schemes have been developed that lead to a reduction of cut-off effects at
short distances, i.e. high temperature, and also allow to reduce the explicit
flavour symmetry breaking of the staggered discretization scheme.

A particular form of improved action used in recent calculations of the
Bielefeld group is a staggered fermion action, which in addition to the stan-
dard one-link term includes a set of bended three-link terms,

SF (mq) = cF1 S1−link,fat(ω) + cF3 S3−link +mq

∑
x

χ̄f
xχ

f
x

≡
∑

x

χ̄f
x

∑
μ

ημ(x)

(
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8
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∑
x

χ̄f
xχ

f
x . (54)

Here ημ(x) ≡ (−1)x0+..+xμ−1 denotes the staggered fermion phase factors.
Furthermore, we have made explicit the dependence of the fermion action on
different quark flavours q, and the corresponding bare quark masses mq, and
give an intuitive graphical representation of the action. The tree level coeffi-
cients cF1 and cF3 appearing in SF have been fixed by demanding rotational
invariance of the free quark propagator at O(p4) (“p4-action”) [69]. In addi-
tion the 1-link term of the fermion action has been modified by introducing
“fat” links [68] with a weight ω = 0.2. The use of fat links does lead to a
reduction of the flavour symmetry breaking close to Tc and at the same time
does not modify the good features of the p4-action at high temperature, i.e.
it does not modify the cut-off effects at tree level and has little influence on
the cut-off dependence of bulk thermodynamic observables at O(g2) in the
high temperature phase [69]. Further details on the definition of the action
are given in [69].

We refer to this action with a fat 1-link term combined with the tree level
improved gauge action as the p4-action. The Nτ -dependence of cut-off effects
resulting from this action is shown in Fig. 9.
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14. E. Shuryak, T. Schäfer: Phys. Rev. Lett 75, 1707 (1995)
15. Y. Iwassaki, K. Kanaya, S. Sakai, T. Yoshie: Nucl. Phys. (Proc. Suppl.) 42,

261 (1995)
16. H. Satz: Nucl. Phys. A642, 130 (1998)
17. E. Shuryak: Phys. Lett. B107, 103 (1981)
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1 Introduction

1.1 An Outline

The article provides a brief overview of what we have learned about the QCD
vacuum, hadrons and hadronic matter during the last two decades. A sys-
tematic description of the topic would need a large book, not an article. Some
material is available in reviews written in a more technical way: instantons
and chiral symmetry breaking are treated in [1,2], correlators, OPE etc. in
[3]. A lot of other material has been published recently: one can only consult
the original papers.

In this article there are not so many formulae. I tried to clarify the main
physics point, the main questions debated today, and to show a few recent
examples. Admittedly, the title of this article is very general: but it covers a
lot of different phenomena. We will start with the QCD vacuum structure,
move to hadronic structure, discuss phases of hot/dense QCD and eventually
consider high energy collisions of hadrons and heavy ions.

The main line in all the discussion will be a systematic use of semiclassical
methods, specifically of instantons. The reasons for that are: (i) they are the
only truly non-perturbative effects understood by now; (ii) they lead to large
and probably even dominant effects in many cases; (iii) due to the progress
during the last decade, we have a nearly quantitative theory of instanton
effects, solved numerically to all orders in the so called ’t Hooft interaction.

Although we still do not understand confinement, its companion prob-
lem - chiral symmetry breaking in the QCD vacuum - is now understood
to a significant degree. Not only have we a simple qualitative understanding
of where those quasi-zero modes of the Dirac operator come from, but we
can calculate their density, space-time shape and eventually QCD correlation
functions with surprising accuracy. So, in a way, the problem of hadronic
structure is nearly solved for light-quark hadrons1.

As we will see below, the QCD phase diagram can also be well understood
in the instanton framework. The boundaries of the three basic phases of
QCD, (i) the hadronic phase, (ii) the Quark-Gluon Plasma (QGP), and (iii)
1 Medium-heavy-quark hadrons, such as c̄c or b̄b, do care about the confining

potential, while very-heavy quarkonia need only the Coulomb forces.
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the Color Superconductor (CS) phases, appear as a balance between three
fundamental pairing channels, namely (i) the attraction in the scalar colorless
q̄q channel, (ii) the instanton-anti-instanton pairing induced by light quark
exchanges, and (iii) the attraction in scalar but colored qq channels.

The last part deals with heavy ion collisions: those are related to the other
articles of this book since this is how we try to access hot QCD experimentally.
We will discuss first results coming from RHIC, and show that the matter
produced seems to behave macroscopically (namely, hydrodynamically) ac-
cording to a proper Equation of State. We will also try to connect the rapid
onset of QGP equilibration with existing perturbative and non-perturbative
estimates.

1.2 Scales of QCD

Let me start with an introductory discussion of various “scales” of non-
perturbative QCD. The major reason I do this is the following: some naive
simplistic ideas we had in the early days of QCD, in the 70’s, are still
alive today. I would strongly argue against the picture of non-perturbative
objects as some structure-less fields with typical momenta of the order of
p ∼ ΛQCD ∼ (1 fm)−1. In the mid-70’s people considered hadrons to be
structure-less “bags” filled with near-massless perturbative quarks, with mild
non-perturbative effects appearing at its boundaries and confining them at
the scale of 1 fm.

One logical consequence of this picture would be the applicability of the
derivative expansion of the non-perturbative fields or Operator Product Ex-
pansion (OPE), the basis of QCD sum rules. However, after the first success-
ful applications of the method [4] rather serious problems [6] have surfaced.
All spin-zero channels (as we will see, those are the ones directly coupled to
instantons) related to quark or gluon-based operators alike, indicate unex-
pectedly large non-perturbative effects and deviate from the OPE predictions
at very small distances.

One learned a very important lesson: the non-perturbative fields form
structures with sizes significantly smaller than 1 fm and a local field strength
much larger than Λ2. Instantons are one of them: in order to describe many
of these phenomena in a consistent way one needs instantons of a small size
ρ ∼ 1/3 fm [5]. We have direct confirmation of them from the lattice, but we
do not really understand why there are no large-size instantons.

Furthermore, the instanton is not the only such small-scale gluonic ob-
ject. We also learned from the lattice-based works that QCD flux tubes (or
confining strings) also have a small radius, of only about rstring ≈ 1/5 fm. So,
all hadrons (and clearly the QCD vacuum itself) have a substructure, with
“constituent quarks” generated by instantons connected by such flux tubes.

Clearly this substructure should play an important role in hadronic physics.
We would like to know why the usual quark model has been so successful in
spectroscopy, and why so little of exotic states have been seen. Also, high
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energy hadronic collisions must tell us a lot about a substructure, since the
famous Pomeron also belongs to the list of those surprisingly small non-
perturbative objects.

At the opposite end of the spectrum, people have found that QCD seems
to have also a surprisingly small energy/momentum scale, several times lower
than Λ. It was found that the behavior of the so called “quenched” and the
true QCD is very different, but only if the quark mass is below some scale of
the order of 20-50 MeV. As we will see below, this surprisingly low scale has
been explained by properties of the instanton ensemble.

2 Chiral Symmetry Breaking and Instantons

2.1 Brief History

Let me start around 1961, when the ideas about chiral symmetry and what it
may take to break it spontaneously have appeared. The NJL model [12] was
the first microscopic model which attempted to derive dynamically the prop-
erties of chiral symmetry breaking and pions, starting from some hypothetical
4-fermion interaction

LNJL = G(π2 + σ2), (1)

where π and σ denote the corresponding scalar-isovector and scalar-isoscalar
currents, respectively.

Let me make a few comments about this.
(i) It was the first bridge between the BCS theory of superconductivity and
quantum field theory, leading the way to the Standard Model. It first showed
that the vacuum can be truly nontrivial, a superconductor of a kind, with
the mass gap Δ = 330 − 400 MeV, known as “constituent quark mass”.
(ii) The NJL model has 2 parameters: the strength of its 4-fermion interac-
tion G and the cutoff Λ ∼ 0.8 − 1 GeV. The latter regulates the loops (the
model is non-renormalizable, which is all right for an effective theory) and is
directly the “chiral scale” we are discussing. We will relate Λ to the typical
instanton size ρ, and G to a combination nρ2 of the size and density of in-
stantons.
(iii) One non-trivial prediction of the NJL model was that the mass of
the scalar is mσ ≈ 2mconst.quark. Because this state is the P-wave in non-
relativistic language, it means that there is a strong attraction which is able
to compensate exactly for the rotational kinetic energy. For decades, simpler
hadronic models failed to get this effect, and even now spectroscopists still
argue that this (40-year-old!) result is incorrect. However, lattice results in
fact show that it is exactly right and theoretically understood through in-
stantons. Moreover, the phenomenological σ meson is being revived now, so
possibly it will even come back to its proper place in the Particle Data Table,
after decades of absence.
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Let me now jump to instantons. We will show below that they generate
quite a specific 4-fermion ’t Hooft interaction [11] (for a 2-flavor theory: for
pedagogical reasons we ignore strange quarks altogether now). Furthermore,
its Lagrangian includes the NJL one, but it also has 2 new terms:

LtHooft = G(π2 + σ2 − η2 − δ2) (2)

with the isoscalar-pseudoscalar η and the isovector-scalar δ. ’t Hooft’s minus
sign is crucial here: it shows that the axial U(1) symmetry (e.g. the rotation
of sigma into eta) is not a symmetry. That is why η (actually η′ if strangeness
is included) is not a massless Goldstone particle like the pion.

The most important next development happened in 1980’s: it has been
shown in [5,13] that an instanton-induced interaction does break sponta-
neously the SU(Nf ) chiral symmetry. Unlike the NJL model, the instanton-
induced interaction has a natural cut-off parameter ρ, and the coupling con-
stants are not free parameters, but determined by a physical quantity, the
instanton density. That eventually allowed to solve the ’t Hooft interaction
in all orders, and get quantitative results, see [1].

2.2 General Things About Instantons

I will omit from this paper general things about instantons, well covered
elsewhere. Let me just briefly mention that the topologically-nontrivial 4d
solution was found by Polyakov and collaborators [7], and soon it was in-
terpreted as a semi-classical tunneling between topologically non-equivalent
vacua. The name itself was suggested by ’t Hooft, meaning “existing for an
instant”. Formally, instantons appear in the context of the semi-classical ap-
proximation to the (Euclidean) QCD partition function

Z =
∫
DAμ exp(−S)

Nf∏
f

det (D/ +mf ) , (3)

S =
1

4g2

∫
d4xGa

μνG
a
μν . (4)

Here, S is the gauge field action, and the determinant of the Dirac operator
D/ = γμ(∂μ − iAμ) accounts for the contribution of fermions. In the semi-
classical approximation, we look for saddle points of the functional integral
(3), i.e. configurations that minimize the classical action S. This means that
saddle point configurations are solutions of the classical equations of motion.

These solutions can be found using the identity

S =
1

4g2

∫
d4x

[
±Ga

μνG̃
a
μν +

1
2

(
Ga

μν ∓ G̃a
μν

)2
]
, (5)

where G̃μν = 1/2εμνρσGρσ is the dual field strength tensor (the field strength
tensor in which the roles of electric and magnetic fields are reversed). Since
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the first term is a topological invariant (see below) and the last term is always
positive, it is clear that the action is minimal if the field is (anti) self-dual

Ga
μν = ±G̃a

μν . (6)

The action of a self-dual field configuration is determined by its topological
charge

Q =
1

32π2

∫
d4xGa

μνG̃
a
μν . (7)

From (5), we have S = (8π2|Q|)/g2. For finite action configurations, Q has
to be an integer. The instanton is a solution with Q = 1 [7]

Aa
μ(x) =

2ηaμνxν

x2 + ρ2 , (8)

where the ’t Hooft symbol ηaμν is defined by

ηaμν =

⎧⎨⎩
εaμν μ, ν = 1, 2, 3
δaμ ν = 4
−δaν μ = 4

(9)

and ρ is an arbitrary parameter characterizing the size of the instanton. This
original instanton has its non-trivial topology at large distances, but if we are
to consider an instanton ensemble, it is another form, the so called singular
gauge,

Aa
μ(x) =

2η̄aμνxνρ
2

(x2 + ρ2)x2 , (10)

which is needed because in this case the non-trivial topology is at the point
singularity.

The classical instanton solution has a number of degrees of freedom,
known as collective coordinates. In addition to the size, the solution is char-
acterized by the instanton position zμ and the color orientation matrix Rab

(corresponding to color rotations Aa
μ → RabAb

μ). A solution with topological
charge Q = −1 can be constructed by replacing ηaμν → ηaμν , where ηaμν is
defined by changing the sign of the last two equations in (9).

The physical meaning of the instanton solution becomes clear if we con-
sider the classical Yang-Mills Hamiltonian (in the temporal gauge, A0 = 0)

H =
1

2g2

∫
d3x (E2

i +B2
i ), (11)

where E2
i is the kinetic and B2

i the potential energy term. The classical vacua
correspond to configurations with zero field strength. For non-abelian gauge
fields this limits the gauge fields to be “pure gauge” Ai = iU(x)∂iU(x)†. Such
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configurations are characterized by a topological winding number nW , which
distinguishes between gauge transformations U that are not continuously
connected.

This means that there is an infinite set of classical vacua enumerated by
an integer n. Instantons are tunneling solutions that connect the different
vacua. They have potential energy B2 > 0 and kinetic energy E2 < 0, their
sum being zero at any moment in time. Since the instanton action is finite,
the barrier between the topological vacua can be penetrated, and the true
vacuum is a linear combination |θ〉 =

∑
n e

inθ|n〉, called the theta vacuum.
In QCD, the value of θ is an external parameter. If θ �= 0 the QCD vacuum
breaks CP invariance. Experimental limits on CP violation require2 θ < 10−9.

The rate of tunneling between different topological vacua is determined
by the semi-classical (WKB) method. From the single instanton action one
expects

Ptunneling ∼ exp(−8π2/g2). (12)

The factor in front of the exponent can be determined by taking into account
fluctuations Aμ = Acl

μ + δAμ around the classical instanton solution. This
calculation was performed in a classic paper by ’t Hooft [11]. The result is

dnI =
0.47 exp(−1.68Nc)
(Nc − 1)!(Nc − 2)!

(
8π2

g2

)2Nc

exp
(

− 8π2

g2(ρ)

)
d4zdρ

ρ5 , (13)

where g2(ρ) is the running coupling constant at the scale of the instan-
ton size. Taking into account quantum fluctuations, the effective action de-
pends on the instanton size. This is a sign of the conformal (scale) anomaly
in QCD. Using the one-loop beta function the result can be written as
dnI/(d4z) ∼ dρρ−5(ρΛ)b, where b = (11Nc/3) = 11 is the first coefficient
of the beta function. Since b is a large number, small size instantons are
strongly suppressed. On the other hand, there appears to be a divergence at
large ρ. In this regime, however, the perturbative analysis based on the one
loop beta function is not applicable.

2.3 Zero Modes and the U(1)A Anomaly

In the last section we showed that instantons interpolate between different
topological vacua in QCD. It is then natural to ask if the different vacua
can be physically distinguished. This question is answered most easily in the
presence of light fermions, because the different vacua have different axial
charges. This observation is the key element in understanding the mechanism
of chiral anomalies.
2 The question why θ happens to be so small is known as the “strong CP problem”.

Most likely, the resolution of the strong CP problem requires physics outside QCD
and we will not discuss it any further.
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Anomalies first appeared in the context of perturbation theory [8,9]. From
the triangle diagram involving an external axial vector current one finds that
the flavor singlet current, which is conserved on the classical level, develops
an anomalous divergence on the quantum level

∂μj
5
μ =

Nf

16π2G
a
μνG̃

a
μν . (14)

This anomaly plays an important role in QCD, because it explains the absence
of a ninth Goldstone boson, what is the so called U(1)A puzzle.

The mechanism of the anomaly is intimately connected with instantons.
First, we recognize the integral of the RHS of (14) as 2NfQ, where Q is the
topological charge. This means that in the background field of an instanton
we expect axial charge conservation to be violated by 2Nf units. The crucial
property of instantons, originally discovered by ’t Hooft, is that the Dirac
operator has a zero mode iD/ψ0(x) = 0 in the instanton field. For an instanton
in the singular gauge, the zero mode wave function is

ψ0(x) =
ρ

π

1
(x2 + ρ2)3/2

γ · x√
x2

1 + γ5

2
φ, (15)

where φαm = εαm/
√

2 is a constant spinor, which couples the color index α to
the spin index m = 1, 2. Note that the solution is left handed, γ5ψ0 = −ψ0.
Analogously, in the field of an anti-instanton there is a right handed zero
mode.

We can now see how the axial charge is violated during tunneling. For
this purpose, let us consider the Dirac Hamiltonian iα · D in the field of the
instanton. The presence of a 4-dimensional normalizable zero mode implies
that there is one left-handed state that crosses from positive to negative en-
ergy during the tunneling event. This can be seen as follows: In the adiabatic
approximation, solutions of the Dirac equation are given by

ψi(x, t) = ψi(x, t = −∞) exp
(

−
∫ t

−∞
dt′ ε(t′)

)
. (16)

The only way we can have a 4-dimensional normalizable wave function is if
εi is positive for t → ∞ and negative for t → −∞. This explains how the
axial charge can be violated during tunneling. No fermion ever changes its
chirality, all states simply move one level up or down. The axial charge comes,
so to say, from the “bottom of the Dirac sea”.

2.4 The Effective Interaction Between Quarks

Proceeding from pure glue theory to QCD with light quarks, one has to deal
with the much more complicated problem of quark-induced interactions. In-
deed, on the level of a single instanton we cannot even understand the pres-
ence of instantons in full QCD. The reason is again related to the existence of
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zero modes. In the presence of light quarks, the tunneling rate is proportional
to the fermion determinant, which is given by the product of the eigenvalues
of the Dirac operator. This means that (as m → 0) the tunneling amplitude
vanishes and individual instantons cannot exist!

This result is related to the anomaly: During the tunneling event, the
axial charge of the vacuum changes, so instantons have to be accompanied
by fermions. The tunneling amplitude is non-zero only in the presence of
external quark sources, because zero modes in the denominator of the quark
propagator can cancel against zero modes in the determinant. Consider the
fermion propagator in the instanton field

S(x, y) =
ψ0(x)ψ+

0 (y)
im

+
∑
λ�=0

ψλ(x)ψ+
λ (y)

λ+ im
, (17)

where iD/ψλ = λψλ. For Nf light quark flavors the instanton amplitude is
proportional to mNf . Instead of the tunneling amplitude, let us calculate
a 2Nf -quark Green’s function 〈∏f ψ̄f (xf )Γψf (yf )〉, containing one quark
and one antiquark of each flavor. Performing the contractions, the amplitude
involves Nf fermion propagators (17), so that the zero mode contribution
involves a factor mNf in the denominator.

The result can be written in terms of an effective Lagrangian [11]. It is a
non-local 2Nf -fermion interaction, where the quarks are emitted or absorbed
in zero mode wave functions. The result simplifies if we take the long wave-
length limit (in reality, the interaction is cut off at momenta k > ρ−1) and
averaged over the instanton position and color orientation. For Nf = 1 the
result is [11,14]

LNf =1 =
∫
dρn0(ρ)

(
mρ− 4

3
π2ρ3q̄RqL

)
, (18)

where n0(ρ) is the tunneling rate. Note that the zero mode contribution acts
like a mass term. For Nf = 1, there is only one chiral U(1) symmetry, which
is anomalous. This means that the anomaly breaks chiral symmetry and gives
a fermion mass term. This is not true for more than one flavor. For Nf = 2,
the result is

LNf=2 =
∫
dρn0(ρ)

[∏
f

(
mρ− 4

3
π2ρ3q̄f,Rqf,L

)
(19)

+
3
32

(
4
3
π2ρ3

)2 (
ūRλ

auLd̄Rλ
adL − ūRσμνλ

auLd̄Rσμνλ
adL

) ]
.

One can easily check that the interaction is SU(2) × SU(2) invariant, but
U(1)A is explicitly broken. This Lagrangian is of the type first studied by
Nambu and Jona-Lasinio [12] and widely used as a model for chiral symmetry
breaking and as an effective description for low energy chiral dynamics. It can
be transformed to the form discussed above when we compared it to the NJL
interaction.
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2.5 The Quark Condensate in the Mean Field Approximation

We showed in the last section that in the presence of light fermions, tunneling
can only take place if the tunneling event is accompanied by Nf fermions
which change their chirality. But in the QCD vacuum, chiral symmetry is
broken and the quark condensate 〈q̄q〉 = 〈q̄LqR + q̄RqL〉 is non-zero. This
means that there is a finite amplitude for a quark to change its chirality and
we expect the instanton density to be finite.

For a sufficiently dilute system of instantons, we can estimate the in-
stanton density in full QCD from the expectation value of the 2Nf fermion
operator in the effective Lagrangian (19). Using the factorization assumption
[4], we find that the factor

∏
f mf in the instanton density should be replaced

by
∏

f m
∗
f , where the effective quark mass is given by

m∗
f = mf − 2

3
π2ρ2〈q̄fqf 〉. (20)

This shows that if chiral symmetry is broken, the instanton density is finite
in the chiral limit.

This obviously raises the question whether the quark condensate itself
can be generated by instantons. This question can be addressed using sev-
eral different techniques (for a review, see [1,2]). One possibility is to use the
effective interaction (19) and to calculate the quark condensate in the mean
field (Hartree-Fock) approximation. This corresponds to summing the con-
tribution of all “cactus” diagrams to the full quark propagator. The result is
a gap equation [13] ∫

d4k

(2π)4
M2(k)

k2 +M2(k)
=

N

4NcV
, (21)

which determines the constituent quark mass M(0) in terms of the instanton
density (N/V ). Here, M(k) = M(0)k2ϕ′2(k)/(2πρ) is the momentum depen-
dent effective quark mass and ϕ′(k) is the Fourier transform of the zero mode
profile [13]. The quark condensate is given by

〈q̄q〉 = −4Nc

∫
d4k

(2π)4
M(k)

M2(k) + k2 . (22)

Using our standard parameters (N/V ) = 1 fm−4 and ρ = 1/3 fm, one
finds 〈q̄q〉  −(255 MeV)3 and M(0) = 320 MeV. Parametrically, 〈q̄q〉 ∼
(N/V )1/2ρ−1 and M(0) ∼ (N/V )1/2ρ. Note that both quantities are not
proportional to (N/V ) but rather to (N/V )1/2. This is a reflection of the
fact that spontaneous breaking of chiral symmetry is not a single instanton
effect, but involves infinitely many instantons.

A very instructive way to study the mechanism for chiral symmetry break-
ing at a more microscopic level consists in considering the distribution of
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eigenvalues of the Dirac operator. A general relation that connects the spec-
tral density ρ(λ) of the Dirac operator to the quark condensate was given by
the Banks-Casher relation

〈q̄q〉 = −πρ(0). (23)

This result is analogous to the Kondo formula for the electrical conductiv-
ity. Just like the conductivity is given by the density of states at the Fermi
surface, the quark condensate is determined by the level density at zero vir-
tuality λ. For a disordered, random, system of instantons the zero modes
interact and form a band around λ = 0. As a result, the eigenstates are de-
localized and chiral symmetry is broken. On the other hand, if instantons are
strongly correlated, for example bound into topologically neutral molecules,
the eigenvalues are pushed away from zero, the eigenstates are localized and
chiral symmetry is unbroken. As we will see below, which scenario is precisely
realized depends on the parameters of the theory, like the number of light
flavors and the temperature. Of course, for “real” QCD with two light flavors
at T = 0, we expect chiral symmetry to be broken. This is supported by
numerical simulations of the partition function of the instanton liquid, see
[1].

2.6 The Qualitative Picture of the Instanton Ensemble

Using basically such expressions and the known value of the quark conden-
sate, it was pointed out in [5] that all would be consistent only if the typical
instanton size happened to be significantly smaller than their separation3,
R = n−1/4 ≈ 1 fm, namely ρmax ∼ 1/3 fm.

In Fig. 1 one can see lattice data on the instanton size distribution, ob-
tained by cooling the original gauge fields. A similar distribution can also be
obtained from lowest fermionic Dirac eigenmodes: in this case no “cooling”
is needed.

Let me now show another evidence for this value of the instanton size,
taken from the pion form factor calculated in the instanton model [15]. In
Fig. 2, we show how the experimentally measured pion size correlates with the
input mean instanton size: one can see that the value 0.35 fm is a clear winner.
If so, the following qualitative picture of the QCD vacuum has emerged:

1. Since the instanton size is significantly smaller than the typical separation
R between instantons, ρ/R ∼ 1/3, the vacuum is fairly dilute. The fraction
of spacetime occupied by strong fields is only a few percent.

2. The fields inside the instanton are very strong, Gμν � Λ2
QCD. This means

that the semi-classical approximation is valid, and the typical action is
large

S0 = 8π2/g2(ρ) ∼ 10 − 15 � 1. (24)
3 Derived in turn from the gluon condensate and the topological susceptibility.
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Fig. 1. The instanton density dn/dρd4z [fm−5] versus its size ρ [fm]. The points
are from the lattice work [10] for this theory, with β = 5.85 (diamonds), 6.0
(squares) and 6.1 (circles). Their comparison should demonstrate that the results
are rather lattice-independent. The line corresponds to the proposed expression
∼ exp(−2πσρ2), see the text

Higher order corrections are proportional to 1/S0 and presumably small.
3. Instantons retain their individuality and are not destroyed by interactions.

From the dipole formula, one can estimate

|δSint| ∼ (2 − 3) � S0. (25)

4. Nevertheless, interactions are important for the structure of the instanton
ensemble, since

exp |δSint| ∼ 20 � 1. (26)

This implies that interactions have a significant effect on correlations among
instantons, and the instanton ensemble in QCD is not a dilute gas but an
interacting liquid.

The aspects of the QCD vacuum for which instantons are most important
are those related to light fermions. Their importance in the context of chiral
symmetry breaking is related to the fact that the Dirac operator has a chiral
zero mode in the field of an instanton. These zero modes are localized quark
states around instantons, like atomic states of electrons around nuclei. At
a finite density of instantons those states can become collective, like atomic
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Fig. 2. The fitted parameter M of the pion form factor f ∼ M2/(Q2 +M2), versus
the instanton size.

states in metals. The resulting delocalized state corresponds to the wave
function of the quark condensate.

Direct tests of all these ideas on the lattice are possible. One may have
a look at the lowest eigenmodes and see if they are related to instantons
or something else (monopoles, vortices...) by identifying their shapes - 4d
bumps, lines, or 2 d sheets, respectively. So far, only bumps representing
instantons were seen.

One may also test the local chirality of the lowest eigenmodes. Just at
this school I learned from one of its young participants, Christof Gattringer,
about his version of chiral lattice fermions and the nice results he got. Among
those, remarkably well defined, is the separation between instanton-based and
perturbative-like lowest modes, revealed by the so-called participation ratios.

Let me now explain the lowest QCD scale generated by instantons, as
mentioned above. The width of the zero mode zone of states is of the order
of the root-mean-square matrix element of the Dirac operator < I|/D|J >∼
ρ2/R3. Here, the states I,J are some instanton and anti-instanton zero modes,
ρ is the instanton size and R ∼ n−1/4 ≈ 1 fm is the distance between their
centers. Note the small factor (ρ/R)2 ∼ 1/10. The Dirac eigenvalues from
the zone have similar magnitudes. Now, the eigenvalues enter together with
quark mass m: only if this quark mass is smaller than this scale, we start
seeing the physics of the zero mode zone. In particular, for quenched QCD
(or an instanton liquid) there is no determinant and the zone states have a
rather wrong spectrum. However, only if the quark mass is small compared to
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its width we start observing the difference. Only recently lattice practitioners
were able to do so: Indeed, quenched QCD results at small m start deviating
quite drastically from the correct answers.

2.7 Interacting Instantons

In the QCD partition function there are two types of fields, gluons and quarks,
and so the first question one addresses is which integral to take first.

(i) One way is to eliminate gluonic degrees of freedom first. A physical
motivation for this may be that gluonic states are heavy and an effective
fermionic theory should be better suited to derive an effective low-energy
fermionic theory. It is a well-trodden path and one can follow it to the de-
velopment of a similar four-fermion theory, the NJL model. One can do sim-
ple mean-field or random-field approximation (RPA) diagrams, and find the
mean condensate and properties of the Goldstone mesons [13]. The results for
color superconductors at high density reported below are done with the same
technique as well. But nevertheless, not much can really be done in such a
NJL-like approach. In fact, multiple attacks during the last 40 years on the
NJL model beyond the mean field basically failed. In particular, one might
think that, if baryons are states with three quarks and if using quasi-local
four-fermion Lagrangians for the three-body system is a solvable quantum
mechanical problem, one could at least tell if nucleons are or are not bound
in NJL. In fact one cannot: the results depend strongly on subtleties of how
the local limit for the interaction is defined, and there is no clear answer to
this question. Other notorious attempts to sum more complicated diagrams
deal with the possible modification of the chiral condensate. Some works even
claim that those diagrams destroy it completely!

Going from NJL to instantons improves the situation enormously: the
shape of the form factor is no longer a guess (it is provided by the shape
of zero modes) and one can in principle evaluate any particular diagram.
However, summing them all up appears like an impossible task.

(ii) The solution to this problem was found. For that, one has to follow the
opposite strategy and do the fermion integral first. The first step is simple
and standard: fermions only enter quadratically, leading to a fermionic deter-
minant. In the instanton approximation, it leads to the Interacting Instanton
Liquid Model (IILM), defined by the following partition function

Z =
∑

N+, N−

1
N+!N−!

∫ N++N−∏
i

[dΩi d(ρi)] exp(−Sint)
Nf∏
f

det(D̂ +mf ) (27)

describing a system of pseudo-particles interacting via the bosonic action and
the fermionic determinant. Here, dΩi = dUi d

4zi dρi is the measure in color
orientation, position, and size associated with single instantons, and d(ρ) is
the single instanton density d(ρ) = dnI,Ī/dρdz.
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The gauge interaction between instantons is approximated by a sum of
pure two-body interactions Sint = 1

2

∑
I �=J Sint(ΩIJ). Genuine three-body

effects in the instanton interaction are not important as long as the ensemble
is reasonably dilute. Implementation of this part of the interaction (quenched
simulation) is quite analogous to usual statistical ensembles made of atoms.

As already mentioned, quark exchanges between instantons are included
in the fermionic determinant. Finding a diagonal set of fermionic eigenstates
of the Dirac operator is similar to what people are doing, e.g., in quantum
chemistry when electron states for molecules are calculated. The difficulty of
our problem is, however, much bigger, because this set of fermionic states
should be determined for all configurations which appear during the Monte-
Carlo process.

If the set of fermionic states is, however, limited to the subspace of instan-
ton zero modes, the problem becomes tractable numerically. Typical calcu-
lations in the IILM involved up to N∼ 100 instantons (and anti-instantons),
which means that the determinants of N ×N matrices are involved. Such de-
terminants can be evaluated by an ordinary workstation (and even PC these
days) so quickly that a straightforward Monte Carlo simulation of the IILM
is possible in a few minutes. On the other hand, expanding the determinant
in a sum of products of matrix elements, one can easily identify the sum of
all closed loop diagrams up to order N in the ’t Hooft interaction. Thus, in
this way one can actually take care of about 100 factorial diagrams!

3 Hadronic Structure
and the QCD Correlation Functions

3.1 Correlators as a Bridge
Between Hadronic and Partonic Worlds

Consider two currents separated by a space-like distance x (which can be
considered as the spatial distance, or an Euclidean time) and introduce cor-
relation functions of the type

K(x) =< T (J(x)J(0)) > (28)

with J(x) = ψ̄(x)Γψ(x). The matrix Γ contains γμ for vector currents, γ5 for
the pseudoscalar, or 1 for the scalars, etc. and also a flavor matrix, if needed.

We will start with isovector-vector and axial currents, and then discuss
four scalar-pseudoscalar channels: π (P=-1, I=1), σ or f0 (P=+1, I=0),
η (P=-1, I=0), and δ or a0 (P=+1, I=1).

In a (relativistic) field theory, correlation functions of gauge invariant
local operators are the proper tool to study the spectrum of the theory.
The correlation functions can be calculated either from the physical states
(mesons, baryons, glueballs) or in terms of the fundamental fields (quarks
and gluons) of the theory. In the latter case, we have a variety of techniques
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at our disposal, ranging from perturbative QCD, the OPE, to models of
QCD and lattice simulations. For this reason, correlation functions provide a
bridge between hadronic phenomenology on the one side and the underlying
structure of the QCD vacuum on the other side.

Loosely speaking, hadronic correlation functions play the same role for
understanding the forces between quarks as the NN scattering phase shifts
did in the case of nuclear forces. In the case of quarks, however, confine-
ment implies that we cannot define scattering amplitudes in the usual way.
Instead, one has to focus on the behavior of gauge invariant correlation func-
tions at short and intermediate distance scales. The available theoretical and
phenomenological information about these functions was recently reviewed
in [3].

In all cases at small x we expect K(x) ≈ K0(x), where the latter corre-
sponds to just free propagation of (about massless) light quarks. The zeroth
order correlators are all just K0(x) = 12/(π4x6), basically the square of the
massless quark propagator.

The first deviations due to non-perturbative effects can be studied using
the Wilson OPE in Ref. [4]. For all scalar and pseudoscalar channels the
resulting first correction is

K(x)
K0(x)

= 1 +
x4

384
< (gG)2 > +... (29)

The “gluon condensate” is assumed to be made out of a soft vacuum field,
and therefore all arguments can be simply taken at the point x = 0. The
so-called standard value of the “gluon condensate” appearing here was esti-
mated previously from charmonium sum rules:

< (gG)2 >SV Z≈ 0.5 GeV4. (30)

Thus, the OPE suggests the following scale, at which the correction becomes
equal to the first term:

xOPE = (384/ < (gG)2 >SV Z)1/4 ≈ 1.0 fm. (31)

This seems to be completely consistent with the approximation used. How-
ever, as Novikov, Shifman, Vainshtein, and Zakharov soon noticed [6], this
(and other OPE corrections) completely failed to describe all the JP = O±

channels. We return to this issue after we consider vectors and axials.

3.2 Vector and Axial Correlators

The information available on vector correlation functions from experimental
data on e+e− → hadrons, the OPE and other exact results was reviewed
in [3]. Since then, however, new high statistics measurements of hadronic τ
decays τ → ντ + hadrons have been done. For definiteness, we use results of
one of them, namely the ALEPH experiment at CERN [16,17].
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The vector and axial-vector correlation functions areΠV (x)=〈ja
μ(x)ja

μ(0)〉
and ΠA(x) = 〈j5 a

μ (x)j5 a
μ (0)〉. Here, ja

μ(x) = q̄γμ
τa

2 q, j
5 a
μ (x) = q̄γμγ5

τa

2 q
are the isotriplet vector and axial-vector currents. The Euclidean correlation
functions have the spectral representation [3]

ΠV,A(x) =
∫
ds ρV,A(s)D(

√
s, x), (32)

where D(m,x) = m/(4π2x)K1(mx) is the Euclidean coordinate-space prop-
agator of a scalar particle with mass m. We shall focus on the linear com-
binations ΠV + ΠA and ΠV − ΠA. These combinations allow for a clearer
separation of different nonperturbative effects. The corresponding spectral
functions ρV ± ρA measured by the ALEPH collaboration are shown in Fig.
3. The errors are a combination of statistical and systematic ones (below we
use them, conservatively, as pure systematic): the main problem seems to be
the separation into V and A of channels with Kaons, which may affect V −A
at s > 2 GeV at the 10% level. None of our conclusions are sensitive to it.

In QCD, the vector and axial-vector spectral functions must satisfy chiral
sum rules. Assuming that ρV − ρA = 0 above s > m2

τ and using ALEPH
data below it, one finds that all four of the sum rules are satisfied within the
experimental uncertainty, but the central values differ significantly from the
chiral predictions [16]. In general, both functions are expected to have oscil-
lations of decreasing amplitude, and putting ρV − ρA to zero at an arbitrary
point implies the appearance of spurious dimension d = 2, 4 operators in the
correlation functions at small x. Therefore, we have decided to terminate the
data above a specially tuned point, s0 = 2.5 GeV2, enforcing all four chiral
sum rules. (The reader should, however, be aware of the fact that we have,
in fact, slightly moved the data points in the small-x region within the er-
ror band.) Finally we add the pion-pole contribution (not shown in Fig. 3),
which corresponds to an extra term Ππ

A(x) = f2
πm

2
πD(mπ, x). The resulting

correlation functions ΠV (x) ±ΠA(x) are shown in Fig. 4.
We begin our analysis with the combination ΠV −ΠA. This combination

is sensitive to chiral symmetry breaking, while perturbative diagrams as well
as gluonic operators cancel out.

In Fig. 4, we compare the measured correlation functions with predictions
from the instanton liquid model (in its simplest form, random instanton liquid
with parameters n, ρ fixed in [5] and discussed above).

The agreement of the instanton prediction with the measured V − A
correlation is impressive: it extends all the way from short to large distances.
At distances x > 1.25 fm both combinations are dominated by the pion
contribution while at intermediate x the ρ, ρ′, and a1 resonances contribute.

We shall now focus our attention on the V +A correlation function. The
unique feature of this function is the fact that the correlator remains close to
the free-field behavior for distances as large as 1 fm. This phenomenon was
referred to as “super-duality” in [3]. The instanton model reproduces this
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Fig. 3. Spectral functions v(s) ± a(s) = 4π2(ρV (s) + ρA(s)) extracted by the
ALEPH collaboration from τ -lepton hadronic decays

feature of the V +A correlator. We also notice that for small x the deviation
of the correlator in the instanton model from the free-field behavior is small
compared to the perturbative O(α2/π) correction. This opens the possibility
of precision studies of the pQCD contribution. But before we do so, let us



268 Edward V. Shuryak

Fig. 4. Euclidean coordinate space correlation functions ΠV (x) ± ΠA(x) normal-
ized to the free-field behavior. The solid lines show the correlation functions re-
constructed from the ALEPH spectral functions and the dotted lines are the cor-
responding error bands. The squares show the result of a random instanton liquid
model and the diamonds of the OPE fit described in the text

compare the correlation functions to the OPE prediction

ΠV (x) +ΠA(x)
2Π0(x)

= 1 +
αs

π
− 1

384
〈g2G2

μν〉x4

−4π3

81
αs(x)〈q̄q〉 log(x2)x6 + . . . (33)

Note that the perturbative correction is attractive while the power corrections
of dimension d = 4 and d = 6 are repulsive. Direct instantons also induce
an O(x4) correction 1 − π2

12

(
N
V

)
x4 + . . . , which is consistent with the OPE

because in a dilute instanton liquid we have 〈g2G2〉 = 32π2(N/V ). This term
can indeed be seen in the instanton calculation and causes the correlator to
drop below 1 at small x. It is possible to extract the value of ΛQCD (we find
αs(mτ ) = 0.35) and one obtains a clear indication of a running coupling.
This is only possible because the non-perturbative corrections (represented
by instantons) are basically cancelling each other to a very high degree in the
V +A channel.

Why is this happening? The first order in the ’t Hooft interaction is indeed
absent, due to chirality mismatch. There is no general theoretical reason why



Nonperturbative Phenomena and Phases of QCD 269

all non-perturbative terms of higher order should also do so: but the ALEPH
data, when used wrongly, give a hint that they actually do so.

3.3 Spin-Zero Correlation Functions

Now we will look at cases that are completely opposite to those just consid-
ered: the instanton-induced effects will be large. Furthermore, the four chan-
nels actually show a completely different non-perturbative deviation from
K0 at small x: half of them (π, σ) deviate upwards, and another pair (η, δ)
deviate downwards.

Let me first demonstrate, however, that the OPE scale determined above
cannot be correct. All we have to do is to evaluate the strength of the pion
contribution to the correlator in question

Kπ(x) =
λ2

π

4π2x2 . (34)

The coupling constant is defined as λπ =< 0|J(0)|π > and the rest is noth-
ing more than the scalar massless propagator4. Because both the pion term
and the gluon condensate correction happen to be 1/x2, let us compare the
coefficients. Ideal matching would mean that they are about the same

λ2
π ≈ < (gG)2 >SV Z

8π2 . (35)

The r.h.s. is about 0.0063 GeV4. However, phenomenology tells us that (un-
like the better known coupling to the axial current fπ) the coupling λπ is
surprisingly large5. The l.h.s. of this relation is actually λ2

π = (.48GeV)4 =
0.053 GeV4, about 10 times larger than the r.h.s. It means a much larger non-
perturbative effect is needed to explain the deviation from the perturbative
behavior.

Now, let us see why this is so. The instanton effects in spin-0 channels
are in these cases much larger because the effect of the ’t Hooft interaction
appears in those cases in first order. Furthermore, since its flavor structure is
non-diagonal (ūu)(d̄d) the correlator of the two π0 currents (ūγ5u− d̄γ5d) has
opposite sign as compared to the correlator of the η′ currents (ūγ5u+ d̄γ5d).
What it means is that instantons are as attractive in the pion channel as they
are repulsive in the η′ case. The situation is reversed in the scalar channels:
the isoscalar sigma is attractive and the isovector is repulsive.
4 We can ignore the pion mass at the distances in question. We also ignore contri-

butions of other states, which can only add positively to the correlator and make
the disagreement only worse.

5 The reason for that is that the pion is rather compact and also the wave function
is concentrated at its center, so that its value at r = 0 is large. We return to this
point in the discussion of the “instanton liquid” model.
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Fig. 5. Pion correlation function in various approximations and instanton en-
sembles. In the top figure we show the phenomenological expectation (solid), the
OPE (dashed), the single instanton (dotted) and mean-field approximations (long-
dashed) as well as data in the random instanton ensemble. In the bottom figure we
compare different instanton ensembles, random (open squares), quenched (circles)
and interacting (streamline: solid squares; ratio ansatz: solid triangles)

Full results from versions of the instanton liquid model for pion correla-
tors are shown in Fig. 5. Different versions of the model (mentioned in the
figure as IILM(rat) etc.) differ by a particular ansatz for the gauge field used,
from which the interaction is calculated. Note, furthermore, that these figures
contain also a curve marked “phen”: this is what the correlator actually looks
like according to phenomenology.

We simply show a few results of correlation functions in the different
instanton ensembles (for original Refs. see [1]). Some of them (like vector
and axial-vector ones) turned out to be easy: nearly any variant of the in-
stanton model can reproduce well the (experimentally known!) correlators.
Some of them are very much sensitive to details of the model: two such cases
are shown in Figs. 5 and 6. The pion correlation functions in the different
ensembles are qualitatively very similar. The differences are mostly due to
different values of the quark condensate (and the physical quark mass) in
the different ensembles. Using the Gell-Mann-Oaks-Renner relation, one can
extrapolate the pion mass to the physical value of the quark masses. The
results are consistent with the experimental value in the streamline ensemble
(both quenched and unquenched), but they are clearly too small in the ratio
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Fig. 6. η′ meson correlation functions. The various curves and data sets are la-
beled as in Fig. 5. Note that the random instanton liquid model (RILM) and the
quenched version (no fermionic determinant, only bosonic interactions) predict an
η′ correlator to be negative. The same unphysical behavior has been found on the
lattice

ansatz ensemble. This is a reflection of the fact that the ratio ansatz ensemble
is not sufficiently dilute.

The situation is drastically different in the η′ channel. Among the ∼ 40
correlation functions calculated in the random ensemble, only the η′ and the
isovector-scalar δ were found to be completely unacceptable. The correlation
function decreases very rapidly and becomes negative at x ∼ 0.4 fm. This
behavior is incompatible even with a normal spectral representation. The
interaction in the random ensemble is too repulsive and the model “over-
explains” the U(1)A anomaly.

The results in the unquenched ensembles (closed and open points) sig-
nificantly improve the situation. This is related to dynamical correlations
between instantons and anti-instantons (topological charge screening). The
single instanton contribution is repulsive, but the contribution from pairs is
attractive. Only if correlations among instantons and anti-instantons are suf-
ficiently strong the correlators are prevented from becoming negative. Quan-
titatively, the δ and ηns masses in the streamline ensemble are still too heavy
as compared to their experimental values. In the ratio ansatz, on the other
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hand, the correlation functions even show an enhancement at distances on
the order of 1 fm, and the fitted masses are too light. This shows that the η′

channel is very sensitive to the strength of correlations among instantons.
In summary, pion properties are mostly sensitive to global properties of

the instanton ensemble, in particular its diluteness. Good phenomenology
demands ρ̄4n  0.03, as originally suggested in [5]. The properties of the ρ
meson are essentially independent of the diluteness, but show sensitivity to
ĪI correlations. These correlations become crucial in the η′ channel.

3.4 Baryonic Correlation Functions

The existence of a strongly attractive interaction in the pseudoscalar quark-
antiquark (pion) channel also implies an attractive interaction in the scalar
quark-quark (diquark) channel. This interaction is phenomenologically very
desirable, because it immediately explains why the nucleon is light, while the
Δ (S=3/2, I=3/2) is heavy.

The so called Ioffe currents (with no derivatives and the minimum num-
ber of quark fields) are local operators which can excite states with nucleon
quantum numbers. Those with positive parity and spin 1/2 can also be rep-
resented in terms of scalar and pseudoscalar diquarks

η1,2 = (2, 4)
{
εabc(uaCdb)γ5u

c ∓ εabc(uaCγ5d
b)uc

}
. (36)

Nucleon correlation functions are defined by ΠN
αβ(x) = 〈ηα(0)η̄β(x)〉, where

α, β are the Dirac indices of the nucleon currents. In total, there are six
different nucleon correlators: the diagonal η1η̄1, η2η̄2 and the off-diagonal
η1η̄2 correlators, each contracted with either the identity or γ ·x. Let us focus
on the first two of these correlation functions (for more detail, see [1] and
references therein).

The correlation function ΠN
2 in the interacting ensemble is shown in

Fig. 7. The fact that the nucleon in IILM is actually bound can also be
demonstrated by comparing the full nucleon correlation function with that
of three non-interacting quarks (the cube of the average propagator). The
full correlator is significantly larger than the non-interacting one.

There is a significant enhancement over the perturbative contribution
which is nicely described in terms of the nucleon contribution. Numerically,
we find6 mN = 1.019 GeV. In the random ensemble, we have measured the
nucleon mass at smaller quark masses and found mN = 0.96±0.03 GeV. The
nucleon mass is fairly insensitive to the instanton ensemble. However, the
strength of the correlation function depends on the instanton ensemble. This
is reflected by the value of the nucleon coupling constant, which is smaller in
the IILM. In [18] we studied all six nucleon correlation functions. We showed
6 Note that this value corresponds to a relatively large current quark mass

m = 30 MeV.
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that all correlation functions can be described with the same nucleon mass
and coupling constants.

The fitted value of the threshold is E0  1.8 GeV, indicating that there is
little strength in the “three-quark continuum” (dual to higher resonances in
the nucleon channel). A significant part of this interaction was traced down
to the strongly attractive scalar diquark channel. The nucleon (at least in
IILM) is a strongly bound diquark plus a loosely bound third quark. The
properties of this diquark picture of the nucleon continue to be disputed by
phenomenologists. We will return to diquarks in the next section, where they
will become Cooper pairs of color superconductors.

In the case of the Δ resonance, there exists only one independent Ioffe
current, given (for the Δ++) by

ηΔ
μ = εabc(uaCγμu

b)uc. (37)

However, the spin structure of the correlator ΠΔ
μν;αβ(x) = 〈ηΔ

μα(0)η̄Δ
νβ(x)〉 is

much richer. In general, there are ten independent tensor structures, but the
Rarita-Schwinger constraint γμηΔ

μ = 0 reduces this number to four.
The mass of the Δ resonance is too large in the random model, but closer

to experiment in the unquenched ensemble. Note that, similar to the nucleon,
part of this discrepancy is due to the value of the current quark mass. Never-
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theless, theΔ-N mass splitting in the unquenched ensemble ismΔ−mN = 409
MeV, i.e. larger but still comparable to the experimental value of 297 MeV.
It mostly comes from the absent scalar diquarks in the Δ channel.

4 The Phases of QCD

4.1 The Phase Diagram

In this section we discuss QCD in extreme conditions, such as finite temper-
ature/density. Let me first emphasize why it is interesting and instructive to
do so. It is not simply to practice once again the semi-classical or perturba-
tive methods similar to what has been done before in the vacuum. What we
are looking for here are new phases of QCD (and related theories), namely
new self-consistent solutions that differ qualitatively from what we have in
the QCD vacuum.

One such phase occurs at high enough temperature T > Tc: it is known
as Quark-Gluon Plasma (QGP). It is a phase understandable in terms of
basic quark and gluon-like excitations [39], without confinement and with
unbroken chiral symmetry in the massless limit7. One of the main goals of
the heavy-ion program, especially at the new dedicated Brookhaven facility
RHIC, is to study transitions to this phase.

Another one, which has been getting much attention recently, is the direc-
tion of finite density. Very robust color superconductivity was found to be the
case here. Let me also mention one more frontier, which has not yet attracted
sufficient attention: namely a transition (or many transitions?) as the number
of light flavors Nf grows. The minimal scenario includes a transition from
the usual hadronic phase to a more unusual QCD phase, the conformal one,
in which there are no particle-like excitations and correlators are power-like
in the infrared. Even the position of the critical point is unknown. The main
driving force of these studies is the intellectual challenge it provides.

The QCD phase diagram as we understand it now is shown in Fig 8, in the
baryonic chemical potential μ (normalized per quark, not per baryon) and
the temperature T plane. Some part of it is old: it has the hadronic phase at
small values of both parameters, and a QGP phase at large T and μ.

The phase transition line separating them most probably does not really
start at T = Tc, μ = 0 but at an “endpoint” E, a remnant of the so-called
QCD tricritical point, which QCD has in the chiral (all quarks are massless)
limit. Although we do not know where it is8, we hope to find it one day
in experiment. The proposed ideas rotate around the fact that the order
parameter, the VEV of the sigma meson, is at this point truly massless, and
creates a kind of “critical opalescence”. Similar phenomena were predicted
7 It does not mean though, that it is a simple issue to understand even the high-T

limit of QCD, related to non-perturbative 3d dynamics.
8 Its position is very sensitive to the precise value of the strange quark mass ms.
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Fig. 8. Schematic phase diagram of QCD, in the plane temperature T and baryon
chemical potential μ. E and M show critical endpoints of first-order transitions:
M (from multi-fragmentation) is that for a liquid-gas transition in nuclear matter.
The color superconducting phases, CSC2 and CSC3, are explained in the text

and then indeed observed at the endpoint of another line (called M from
multi-fragmentation), separating liquid nuclear matter from the nuclear gas
phase.

The large-density (and low-T ) region looks rather different from what was
shown at conferences just a year ago: two new color superconducting phases
appear there. Unfortunately heavy-ion collisions do not cross this part of the
phase diagrams and so it belongs to neutron star physics.

Above I mentioned an approach to high density starting from the vacuum.
One can also work in the opposite direction, starting from very large densities
and going down. Since the electric part of one-gluon exchange is screened,
the Cooper pairs appear due to magnetic forces. It is interesting by itself, as
a rare example: one has to take care of time delay effects of the interaction.
The results are indefinitely growing gaps at large μ > 10 GeV, as Δ ∼
μexp(− 3π2√

2g(μ)
) [35].

4.2 Finite-Temperature Transition and Large Number of Flavors

There is no place here to discuss in detail the rather extensive lattice data
available now, and I only mention some results related to instantons. In the
vacuum a quasi-random set of instantons leads to chiral-symmetry breaking
and quasi-zero modes: but how, in the same terms, does the high-T phase
look like?

The simplest solution would be just a suppression of instantons at T >
Tc, and at some early time people thought this is what actually happens.
However, it should not be like this because the Debye screening, which is
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killing them, only appears at T = Tc. Lattice QCD works have also found no
depletion of the instanton density up to T = Tc.

On the other hand, the absence of the condensate and quasi-zero modes
implies that the “liquid” is now broken into finite pieces. The simplest of
them are pairs, or instanton-anti-instanton molecules. This is precisely what
instanton simulations have found [1], see Fig. 9. Whether it is indeed so on the
lattice is not yet clear: nice molecules were located, but the evidence for the
molecular mechanism of chiral restoration is still far from being convincing.
(No alternatives I am aware of have been proposed so far, though.)

.

Fig. 9. Typical configuration from an instanton liquid simulation, at T > Tc. Lines
indicate the direction in which quark propagators are the largest. Clear pairing of
instantons and anti-instantons are observed: the pairs tend to have the same spatial
position and are separated mostly by Euclidean time

The results of IILM simulations with a variable number of flavors Nf =
2, 3, 59 flavors with equal masses can be summarized as follows. For Nf = 2
there is a second-order phase transition which turns into a line of first-order
transitions in the m − T plane for Nf > 2. If the system is in the chirally
restored phase (T > Tc) at m = 0, we find a discontinuity in the chiral order
parameter if the mass is increased beyond some critical value. Qualitatively,
the reason for this behavior is clear. Increasing the temperature raises the
role of correlations caused by the fermion determinant, increasing the quark
mass has the opposite effect. We also observe that increasing the number of
flavors lowers the transition temperature. Again, increasing the number of
flavors means that the determinant is raised to a higher power, so fermion
induced correlations become stronger. For Nf = 5 we find that the transition
temperature drops to zero and the instanton liquid has a chirally symmetric
ground state, provided the dynamical quark mass is less than some critical
value. Studying the instanton ensemble in more detail shows that in this case
all instantons are bound into molecules.

9 The case Nf = 4 is omitted because in this case it is very hard to determine
whether the phase transition happens at T > 0.
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Unfortunately, little is known about QCD with a large numbers of flavors
from lattice simulations. There are data by the Columbia group for Nf = 4.
The most important result is that chiral symmetry breaking effects were
found to be drastically smaller as compared to Nf = 0, 2. In particular, the
mass splittings between chiral partners such as π−σ, ρ−a1, N( 1

2
+)−N( 1

2
−),

extrapolated to m = 0 were found to be 4-5 times smaller. This agrees well
with what was found in the interacting instanton model: more work in this
direction is certainly needed.

4.3 High Density and Color Superconductivity

This topic is covered much in detail by the article of M. Alford in this volume,
so I only add a few remarks here.

Although the idea of color superconductivity originates from the 70’s, the
field of high-density QCD was in a dormant state for a long time till two
papers [20,21] (posted on the same day) in 1998 have claimed gaps about 100
times larger than previously thought. The field is booming since then, as one
can see from about 250 citations those papers got in 2 years.

The, then, Princeton group (Alford-Rajagopal-Wilczek) has been thinking
about different pairings from a theoretical perspective, but our (Stony Brook)
team (Rapp-Schäfer-Shuryak-Velkovsky) had started from the impressive qq
pairing phenomenon found theoretically [18] in the instanton liquid model in-
side the nucleon. As explained above, we have found it to be, roughly speak-
ing, a small drop of CS matter, made of one Cooper pair of a certain sort (the
ud scalar diquark) and one massive quark10. Schäfer heroically attempted nu-
merical simulations of the instanton liquid model at finite μ: although he was
not very successful11, he found out strange “polymers” made of instantons
connecting by two quark lines going through. It took us some time to realize
that we see paths of condensed diquarks! It was like finding superconductivity
by watching electrons moving on the computer screen.

The main point I would like to emphasize here is that the qq pairing of
such diquarks has in fact deep dynamical roots: it follows from the same
basic dynamics as the “superconductivity” of the QCD vacuum, the chiral
symmetry breaking. These spin-isospin-zero diquarks are related to pions, as
we will see below.

The most straightforward argument for deeply bound diquarks came from
the bi-color (Nc = 2) theory: in it the scalar diquark is degenerate with pions.
By continuation from Nc = 2 to 3 a trace of it should exist in real QCD12.
10 This is contrary to Δ (decuplet) baryons, which is a small drop of “normal” quark

matter without scalar diquarks.
11 For the same reason as lattice people cannot do it: the fermionic determinant is

not real.
12 The instanton-induced interaction strength in a diquark channel is 1/(Nc − 1) of

that for the q̄γ5q one. It is the same at Nc = 2, zero for large Nc, and is exactly
in between for Nc = 3.
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Instantons create the following amusing triality: there are three attrac-
tive channels which compete: (i) The instanton-induced attraction in the
q̄q channel leading to chiral symmetry breaking. (ii) The instanton-induced
attraction in qq, which leads to color superconductivity. (iii) The light-quark-
induced attraction of ĪI, which leads to pairing of instantons into “molecules”
and a QGP phase without any condensates.

At very high density we also can find an arbitrarily dilute instanton liquid,
as shown recently in [36]. The reason it cannot exist in the vacuum or at
high T is that if the instanton density goes below some critical value, there
cannot be any condensate. (The system then breaks into instanton molecules
or other clusters and chiral symmetry is restored.) However, at high density
the superconducting condensate can be created perturbatively as well (we
mentioned it above) and there is no problem. The dilute instantons interact
by exchanging very light η′ (which would be massless without instantons):
one can calculate an effective Lagrangian, a theta angle dependence etc.

Bi-color QCD: A Very Special Theory. One reason why it is special
(well known to the lattice community): its fermionic determinant is real even
for non-zero μ, which makes simulations possible. However, the major interest
in this theory is related the so-called Pauli-Gursey symmetry. We have argued
above that pions and diquarks appear at the same one-instanton level, and
are, so to say, brothers. In bi-color QCD they become identical twins: due to
the additional symmetry mentioned the diquarks are degenerate with mesons.

In particular, chiral symmetry breaking is done like this: SU(2Nf ) →
Sp(2Nf ), and for Nf = 2 the coset K = SU(4)/Sp(4) = SO(6)/SO(5) = S5.
Those 5 massless modes are pions plus the scalar diquark S and its anti-
particle S̄.

Vector diquarks are degenerate with vector mesons, etc. Therefore, the
scalar-vector splitting is in this case about twice the constituent quark mass,
or about 800 MeV. It should be compared to the binding in the “real” Nc = 3
QCD of only 200-300 MeV, and to zero binding in the large-Nc limit.

The corresponding sigma model describing this chiral symmetry breaking
was worked out in [20]; for the further development, see [24]. As argued in [20],
in this theory the critical value of the transition to color superconductivity is
simply μ = mπ/2, or zero in the chiral limit. The diquark condensate is just a
rotated < q̄q > one, and the gap is the constituent quark mass. Recent lattice
works [27] display it in great detail, building confidence for other cases.

New Studies Reveal Possible New Crystalline Phases. These
phases still have a somewhat debatable status, so I have not indicated them
on the phase diagram.

Once again, there were two papers submitted by chance on the same day.
The “Stony Brook” team [25] has found that a “chiral crystal” with oscillat-
ing < q̄q(x) > (similar to Overhouser spin waves in solid-state physics) can
compete with the BCS 2-flavor superconductor at its onset, or μ ≈ 400 MeV.
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The proper position of this phase is somewhere in between the hadronic phase
(with constant < q̄q >) and a color superconductor.

The “MIT group”[26] has looked at the oscillating superconducting con-
densate < qq(x) >, following earlier works on the so called LOFF phase in
usual superconductors. One has found that it is appearing when the differ-
ence between Fermi momenta of different quark flavors become comparable
to the gap. The natural place for it on the phase diagram is close to the line
at which color superconductivity disappears because the gap goes to zero.

5 High-Energy Collisions of Hadrons and Heavy Ions

5.1 The Little Bang: AGS, SPS and Now the RHIC Era

Let me start with a brief comparison of these two magnificent explosions: the
Big Bang versus the Little Bang, as we call heavy-ion collisions.

The expansion law is roughly the Hubble law in both, v(r) ∼ r, although
strongly anisotropic in the Little Bang. The Hubble constant tells us the
expansion rate today: similarly the radial flow tells us the final magnitude of
the transverse velocity. The acceleration history is not really well measured.
For the Big Bang people use the distance of supernovae, we use Ω− which
does not participate at the late stages to learn what was the velocity earlier.
Both show small dipole (quadrupole or elliptic for Little Bang) components,
what has some physics, and who knows maybe we will see higher-harmonics
fluctuations later on, like in the universe. As we will discuss below, in both
cases the major puzzle is how this large entropy has been actually produced,
and why it happened so early.

The major lessons we learned from AGS experiments (ELAB = 2 −
12 AGeV) are:
(i) Strangeness enhancement over simple multiple NN collisions appears from
very low energies, and heavy-ion collisions quickly approach a nearly ideal
chemical equilibrium of strangeness.
(ii) “Flows” of different species, in their radial directed and elliptical form, are
in this energy domain driven by collective potentials and absorptions: they
are not really flows in a hydrodynamic sense. All of them strongly diminish
by the high end of the AGS region, demonstrating the onset of “softness” of
the EoS. Probably it is some precursor of the QCD phase transition.

Several important lessons came so far from CERN SPS data:
(i) Much more particle ratios have been measured there. Overall those show
a surprisingly good degree of chemical equilibration: the chemical freeze-out
parameters are tantalizingly close to the QGP phase boundary.
(ii) Dileptons show that the radiation spectral density is very different in
dense matter compared to an ideal hadronic gas. The most intriguing data
are the CERES finding of “melting of the ρ”, which seem to be transformed
into a wide continuum reaching down to invariant masses as low as 400 MeV.
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It puts in doubt the “resonance gas” view of hadronic matter at these con-
ditions. Intermediate mass dileptons studied by NA50 can be well described
by thermal radiation with QGP rates.
(iii) The impact parameter of J/ψ and ψ′ suppression in Pb-Pb collisions
studied by the NA50 collaboration shows a rather non-trivial behavior. More
studies are needed, including especially measurements of the open-charm
yields, to understand the origin and magnitude of the suppression.

However, during the last several months those discussions have been over-
shadowed by a list of news from RHIC. It had its first run in summer 2000
and first results were reported recently at the Quark Matter 2001 conference
[28]. The present status is discussed by M. Gyulassy in this volume.

A brief summary can be as follows. The results so far have shown that
heavy-ion collisions (AA) at these energies significantly differ both from the
pp collisions at high energies and the AA collisions at lower (SPS/AGS)
energies. The main features of these data are quite consistent with the QGP
(or Little Bang) scenario, in which entropy is produced promptly and the
subsequent expansion is close to an adiabatic expansion of an equilibrated
hot medium.

Let me mention here two other pictures of the heavy-ion production, dis-
cussed prior to the appearance of these data. One is the string picture, used
in event generators like RQMD and UrQMD: they predicted effectively a
very soft EoS and an elliptic flow decreasing with energy. The other one is a
pure minijet scenario, in which most secondaries would come from indepen-
dently fragmenting minijets. If so, there are basically no collective phenomena
whatsoever.

Already the very first multiplicity measurements reported by the PHO-
BOS collaboration [53] have shown that the particle production per partic-
ipating nucleon is no longer constant, as was the case at lower (SPS/AGS)
energies. This new component may be due to long-anticipated pQCD pro-
cesses, leading to perturbative production of new partons. Unlike high-pt

processes resulting in visible jets, those must be undetectable “mini-jets”
with momenta ∼ 1 − 2 GeV. Production and decay of such mini-jets was
discussed in Ref. [54], also this scenario is the basis of the widely used event
generator HIJING [50]. Its crucial parameter is the cutoff scale pmin: if fit-
ted from pp data to be 1.5-2 GeV, it leads to the predicted mini-jet mul-
tiplicity dNg/dy ∼ 200 for central Au-Au collisions at

√
(s) = 130 AGeV.

If those fragment independently into hadrons, and are supplemented by a
“soft” string-decay component, the predicted total multiplicity was found to
be in good agreement with the first RHIC multiplicity data. Because partons
interact perturbatively, with their scattering and radiation being strongly
peaked at small angles, their equilibration is expected to be relatively long
[55]. However, the new set of RHIC data reported in [28] have provided seri-
ous arguments against the mini-jet scenario, and point toward a quite rapid
entropy production rate and early QGP formation.
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(i) If most of the mini-jets fragment independently, there are no collective
phenomena such as a transverse flow related with the QGP pressure. However,
it was found that those effects are very strong at RHIC. Furthermore, the
STAR collaboration has observed a very robust elliptic flow [38], which is in
perfect agreement with predictions of a hydrodynamic model [45,44] assuming
an equilibrated QGP with its full pressure p ≈ ε/3 above the QCD phase
transition. This agreement persists to rather peripheral collisions, in which
the overlap almond-shaped region of two nuclei is only a couple of fm thick.
STAR and PHENIX data on spectra of identified particles, especially p, p̄,
indicate a spectacular radial expansion, also in agreement with hydrodynamic
calculations [45,44].

(ii) Spectra of hadrons at large pt, especially the π0 spectra, agree well
with HIJING for peripheral collisions, but show much smaller yields for cen-
tral ones, with rather different (exponential-shaped) spectra. It means the
long-anticipated “jet quenching” at large pt is seen for the first time, with a
surprisingly large suppression factor ∼ 1/5. Keeping in mind that jets origi-
nating from the surface outward cannot be quenched, the effect seems to be
as large as it can possibly be. For that to happen, the outgoing high-pt jets
should propagate through matter with a parton population larger than the
above-mentioned minijet density predicted by HIJING.

(iii) The curious interplay between collective and jet effects has also been
studied by the STAR collaboration, in form of the elliptic asymmetry param-
eter v2(pt). At large transverse momenta pt > 2 GeV the data depart from
hydrodynamic predictions and level off. When compared to predictions of jet
quenching models worked out in [56], they also indicate a gluon multiplic-
ity several times larger than the HIJING prediction, and are even consistent
with its maximal possible value evaluated from the final entropy at freeze-out,
(dN/dy)π ∼ 1000.

5.2 Collective Flows and EoS

If we indeed have produced excited matter (rather than just a bunch of
partons which fly away and fragment independently), we expect to see certain
collective phenomena. Ideally, those should be quantitatively reproduced by
relativistic hydrodynamics, which is basically just local energy-momentum
conservation plus the EoS we know from the lattice and from models.

The role of the QCD phase transition in matter expansion is significant.
QCD lattice simulations [42] show approximately a first-order transition.
Over a wide range of energy densities e = 0.5 − 1.4 GeV/fm3, where the
temperature T and the pressure p are nearly constant. So the ratio of pres-
sure to energy density, p/e, decreases till a minimum at a particular energy
density esp ≈ 1.4 GeV/fm3, known as the softest point [43]. Near esp a small
pressure gradient cannot effectively accelerate the matter and the evolution
stagnates. However, when the initial energy density is well above the QCD
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phase transition region, p/e ≈ 1/3, and this pressure drives the collective mo-
tion. The energy densities reached at time ∼ 1 fm/c at SPS(

√
sNN = 17 GeV)

and RHIC (
√
sNN = 130 GeV) are about 4 and 8 GeV/fm3, respectively. We

found that at RHIC conditions we are in the latter regime, and matter accel-
erates to v ∼ 0.2c before entering the soft domain. Therefore by freeze-out
this motion changes the spatial distribution of matter dramatically: e.g., as
shown in [37], the initial almond-shape distribution 10 fm/c later looks like
two separated shells, with a little “nut” in between.

The simplest way to see a hydrodynamic expansion is in the spectra of par-
ticles: on top of chaotic thermal distributions ∼ exp(−mt/T ),m2

t = p2
t +m2

one expects to see an additional broadening due to a hydrodynamic outward
motion. This effect is especially large if particles are heavy, since a flow with
velocity v adds a momentum mv.

Derek Teaney [45] has developed a comprehensive Hydro-to-Hadrons
(H2H) model which combines the hydrodynamic description of the initial
QGP/mixed phase (e > 0.5 GeV/fm3) stages, where hadrons are not appro-
priate degrees of freedom, with a hadronic cascade RQMD for the hadronic
stage. In this way, we can include different EoS displaying properties of the
phase transition, and also incorporate complicated final-state interactions at
freeze-out. The set of EoS used is shown in Fig. 10.
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Fig. 10. The EoSs in the form of squared speed of sound C2
s = dp/dε with variable

latent heats 0.4 GeV/fm3, 0.8 GeV/fm3,.. labeled as LH4, LH8,..versus the energy
density
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The radial flow is usually characterized by the slope parameter T : Each
particle spectrum is fitted to the form dN/dp2

tdy ∼ exp(−mt/T ),m2
t =

p2
t + m2. Although we denoted the slope by T , it is not the temperature: it

incorporates random thermal motion and collective transverse velocity. The
SPS NA49 slope parameters for pions and protons are shown in Fig. 11(a).
The parameter T grows with the particle multiplicity due to an increased
velocity of the radial flow. Furthermore, the rate of growth depends on the
EoS: the softer it is, the less growth. The SPS NA49 data (corresponding
to two data points of our fits to the spectra) favor the (relatively stiff) LH8
EoS. (Details of the fit, a discussion of the b-dependence etc. can be found
in [45].) It is very important to get these parameters for RHIC, especially for
heavy secondaries like nucleons and hyperons.

For non-central collisions the overlap region in the transverse plane has
an elliptic, “almond”, shape, and a larger pressure gradient forces matter to
expand preferentially in the direction of the impact parameter [40]. Compared
to the radial flow, the elliptic flow is formed earlier, and therefore it measures
the early pressure. The elliptic flow is quantified experimentally by measuring
the azimuthal distributions of the produced particles and calculating the
elliptic flow parameter V2 = 〈cos(2φ)〉, where the angle φ is measured with
respect to the impact parameter direction around the beam axis. It appears
due to the elliptic spatial deformation of the overlap region in the nucleus-
nucleus collision, quantified by its eccentricity ε2 =< y2−x2 > / < x2+y2 >,
usually calculated in the Glauber model. Since the effect (v2) is proportional
to the cause (ε2), the ratio v2/ε2 does not have a strong dependence on the
impact parameters b, and this ratio is often used for comparison. (We will
not do that below, in the detailed comparison to data, because ε2(b) is not
directly measured.)

In Fig. 11(b) the elliptic flow of the system is plotted as a function of
the charged particle multiplicity at an impact parameter of 6 fm. Before
discussing the energy dependence, let us quantify the magnitude of the elliptic
flow at the SPS. Ideal relativistic hydrodynamics used in earlier works [40,44]
generally over-predicts the elliptic flow by about a factor 2. An example of
such kind is indicated by a star in Fig. 11(b): it is our hydro result (with the
LH8 EoS) which has been followed hydrodynamically till very late stages,
the freeze-out temperature is Tf = 120 MeV. By switching to the hadronic
cascade at late stages, we have a more appropriate treatment of the resonance
decays and re-scattering rate, and so one can see that it significantly reduces
V2, to the range much closer to the data points.

One might think that one can also do that by simply taking a softer EoS,
e.g., by increasing the latent heat. However, it only happens till LH16 and
then V2 starts to even slightly increase again. The explanation of this non-
monotonous behavior is the interplay of the initial “QGP push” for a stiffer
EoS, with a longer time for the hadronic stage available for a softer EoS.
We cannot show here details, but it turns out that a given (experimental)
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Fig. 11. The transverse mass slope T (a) and elliptic flow parameter V2 (b) versus
the midrapidity (y=0) charged particle multiplicity, for AuAu collisions with b=6

V2 value can correspond to two different solutions, one with an earlier push
and another with the later expansion dominating. Coincidentally, the STAR
data points happen to be right at the onset of such a bifurcation, close to
LH16. The multiplicity dependence of V2 appears simple from Figure 11(b):
all curves show growth with about the same rate. Note, however, that such
a growth of V2 from SPS to RHIC (first predicted in [48] where our first
preliminary results have been shown) is not shared by most other models.
In particular, string-based models like UrQMD predict a decrease by a factor
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of ≈ 2 [49]. It happens because strings produce no transverse pressure and
so the effective EoS is super-soft at high energies. Models based on indepen-
dent parton scattering and decay (such as HIJING) also predict a basically
vanishing (or slightly negative) [50] V2.
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Fig. 12. V2 versus impact parameter b, described experimentally by the number
of participant nucleons, for the RHIC STAR and SPS NA49 experiments. Both are
compared to our results for the LH8 EoS

In Fig. 12 we show how our results compare with data as a function
of the impact parameter. One can see that the agreement becomes much
better at RHIC. Furthermore, one may notice that the deviation from a linear
dependence, which we predict, becomes visible at SPS for more peripheral
collisions with Np/N

max
p < 0.6 or so, while at RHIC only the most peripheral

point, with Np/N
max
p = 0.05 shows such a deviation. This clearly indicates

that the hydrodynamic regime in general works much better at RHIC.
In summary, the flow phenomena observed at RHIC are stronger than at

SPS. It is in complete agreement with the QGP scenario. All data on elliptic
and radial flow can be nicely reproduced by the H2H model. Furthermore, we
are able to restrict the EoS to those with the latent heat about 0.8 GeV/fm3.

5.3 How QGP Happened to Be Produced/Equilibrated So Early?

One possible solution to the puzzle outlined above can be a significantly lower
cutoff scale in AA collisions, as compared to pmin = 1.5 − 2 GeV fitted from
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the pp data. That increases perturbative cross sections, both due to a smaller
momentum transfer and a larger coupling constant. As I argued over the
years, the QGP is a new phase of QCD which is qualitatively different from
the QCD vacuum: therefore the cut-off of pQCD may have entirely different
values and be determined by different phenomena. Furthermore, since QGP
is a plasma-like phase, which screens itself perturbatively [39], one may think
of a cut-off to be determined self-consistently from a resummation of pertur-
bative effects. These ideas known as self-screening or initial-state saturation
were discussed in Refs. [55]. Although the scale in question grows with tem-
perature or density, just above Tc it may actually be smaller than the value
1.5-2 GeV we observe in the vacuum. Its first experimental manifestation
may be a dropping of the so-called “duality scale” in the observed dilepton
spectrum, see the discussion in [59].

Another alternative to explain the large gluon population at RHIC would
be an existence of more rapid multi-gluon production processes. Let us con-
sider an alternative non − perturbative scenario based entirely on non-per-
turbative processes involving instantons and sphalerons [58]. But before we
do that, we have to take a look at hadronic collisions and briefly review a few
recent papers on the subject.

At s > 103 GeV2 hadronic cross sections as p̄p, pp, πp,Kp, γN , and even
γγ grow slowly with the collision energy s. This behavior can be param-
eterized well by a soft Pomeron phenomenology, but we will only use its
logarithmically growing part

σhh′(s) = σhh′(s0) + log(s/s0)Xhh′Δ+ ... (38)

ignoring both the higher powers of log(s) and decreasing Regge terms. We will
use those two parameters from the PDG-2000 recent fits, the intercept and its
coefficient in pp, p̄p collisions, Δ = α(0) − 1 = 0.093(2), XNN = 18.951(27)
mb. Note a qualitative difference between constant and logarithmically grow-
ing parts of the cross section. The former can be explained by prompt color
exchanges, as suggested by Low and Nussinov long ago. It nicely correlates
with a flux tube picture of the final state. The growing part of the cross
section cannot be generated by t-channel color exchanges and is associated
with processes promptly producing some objects, with log(s) coming from
the longitudinal phase space. In pQCD it is gluon production, by processes
like the one shown in Fig. 13(a). If iterated in the t-channel in ladder-type
fashion, the result is approximately a BFKL pole [60]. Although the predicted
power is much larger than Δ mentioned before, it seems to be consistent with
much stronger growth seen in hard processes at HERA: thus it is therefore
sometimes called the “hard pomeron”. The physical origin of the cross sec-
tion growth remains an outstanding open problem: neither the perturbative
resummations nor many non-perturbative models are really quantitative. It is
hardly surprising, since the scale at which a soft Pomeron operates (as seen,
e.g., from the Pomeron slope α′(0) ≈ 1/(2 GeV)2) is also the “substructure
scale” mentioned above.
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Fig. 13. (a) A typical inelastic perturbative process: two t-channel gluons collide,
producing a pair of gluons; (b) An instanton-induced inelastic process incorporates
collisions of multiple t-channel gluons with the instanton (the shaded circle), result-
ing in a multi-gluon production. The intermediate stage of the process, indicated
by the horizontal dashed lines, corresponds to a time when outgoing glue is in the
form of a coherent field configuration - the sphaleron. Since this part of the pro-
cess corresponds to a motion above the barrier, it does not enter the calculation
of the cross section, but is only needed for the prediction of the inclusive spectra,
multiplicities etc.

A recent application of the instanton-induced dynamics to this problem
has been discussed in several papers [61]. Especially relevant for this topic are
two last works, which use insights obtained a decade ago in the discussion
of instanton-induced processes in electroweak theory [34], and the growing
parts of the hh cross sections were ascribed to multi-gluon production via
instantons, see Fig. 13(b). Among qualitative features of this theory an ex-
planation is given why no odderon appears (instantons are SU(2) objects, in
which quarks and antiquarks are not really distinct); furthermore an expla-
nation of the small power Δ (it is proportional to the “instanton diluteness
parameter” nρ4 as mentioned above) and the small size of the soft Pomeron
(governed simply by the small size of instantons ρ ∼ 1/3 fm) is offered.
Although instanton-induced amplitudes contain a small “diluteness” factor,
there is no extra penalty for the production of new gluons: thus one should
expect instanton effects to beat perturbative amplitudes of sufficiently high
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order. This generic idea is also behind the present work, dealing with prompt
multi-gluon production.

A technical description of the process can be split into two stages. The first
one (at which one evaluates the probability) is the motion under the barrier,
and it is described by Euclidean paths approximated by instantons. Their
interaction with the high-energy colliding partons results in some energy
deposition and subsequent motion over the barrier. At this second stage the
action is real, and the factor exp(iS) does not affect the probability, and we
only need to consider it for final-state distributions. The relevant Minkowski
paths start with configurations close to the QCD analogues of electroweak
sphalerons [62], static spherically symmetric clusters of the gluomagnetic field
which satisfy the Yang-Mills equations. (Those can be obtained from known
electroweak solutions in the limit of infinitely large Higgs self-coupling.) Their
mass in QCD is

Msph ≈ 30
g2(ρ)ρ

∼ 2.5 GeV. (39)

Since those field configurations are close to a classically unstable saddle point
at the top of the barrier, they roll downhill and develop gluoelectric fields.
When both become weak enough, the solution can be decomposed into per-
turbative gluons. This part of the process can also be studied directly from the
classical Yang-Mills equation. For electroweak sphalerons it has been done in
Refs. [63], a calculation for its QCD version is in progress [64]. While rolling,
the configurations tend to forget the initial imperfections (such as a non-
spherical shape) since there is only one basic instability path downward: so
the resulting fields should be nearly perfect spherical expanding shells. Elec-
troweak sphalerons decay into approximately 51 W,Z,H quanta, of which
only about 10% are Higgses, which carry only 4% of the energy. Ignoring
those, one can estimate a mean gluon multiplicity per sphaleron decay, by a
simple re-scaling of the coupling constants: the result gives 3-4 gluons. Al-
though this number is not large, it is important to keep in mind that they
appear as a coherent expanding shell of a strong gluonic field.

It has been suggested in [58] that if sphaleron-type objects are copiously
produced, with or instead of p ∼ 1 GeV minijets, they may significantly
increase the entropy produced and speed up the equilibration process.
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23. R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky: Ann. Phys. 280, 35 (2000)

[hep-ph 9904353]
24. J.B. Kogut, M.A. Stephanov, D. Toublan: Phys.Lett. B464, 183 (1999) [hep-

ph/9906346]
25. R. Rapp, E.V. Shuryak, I. Zahed: Phys. Rev. D63, 034008 (2001) [hep-

ph/0008207]
26. M. Alford, J. Bowers, K. Rajagopal: Phys. Rev. D63, 074016 (2001) [hep-

ph/0008208]
27. S. Hands, I. Montvay, M. Oevers, L. Scorzato, J. Skullerud: Nucl. Phys. Proc.

Suppl. 94, 461 (2001) [hep-lat/0010085]
28. Proceedings of Quark Matter 2001, Nucl. Phys. A, in press
29. E.V. Shuryak, I. Zahed: hep-ph/0005152; Phys. Rev. D, in press
30. M. Nowak, E.V. Shuryak, I. Zahed: in progress
31. D. Kharzeev, E. Levin: BNL-NT-99-8; hep-ph/991221
32. E. Shuryak: hep-ph 0001189
33. D. Kharzeev, Y. Kovchegov, E. Levin: hep-ph/0007182
34. A. Ringwald: Nucl. Phys. B330, 1 (1990); O. Espinosa: Nucl.Phys. B343,

310 (1990); V.V. Khoze, A. Ringwald: Phys. Lett. B259, 106-112 (1991); V.I.
Zakharov: Nucl. Phys. B353, 683 (1991); M. Maggiore, M. Shifman: Phys.Rev.
D46, 3550-3564 (1992)

35. D.T. Son: Phys. Rev. D59, 094019 (1999) [hep-ph/9812287]
36. D.T. Son, M.A. Stephanov, A.R. Zhitnitsky: hep-ph/0103099
37. D. Teaney, E.V. Shuryak: Phys. Rev. Lett. 83, 4951 (1999) [nucl-th/9904006]
38. K.H. Ackermann et al.: [STAR Collaboration] nucl-ex/0009011
39. E. Shuryak: Phys. Rep. 61, 71 (1980); Phys. Lett. 78B, 150 (1978); Sov. J.

Nucl. Phys. 28, 408 (1978)



290 Edward V. Shuryak

40. J.Y. Ollitrault: Phys. Rev. D46, 229 (1992); Phys. Rev. D48, 1132 (1993)
41. H. Sorge: Phys. Rev. Lett. 78, 2309 (1997)
42. F. Karsch, E. Laermann, A. Peikert: Phys. Lett. B478, 447 (2000) [hep-

lat/0002003]
43. C.M. Hung, E. Shuryak: Phys. Rev. C57, 1891 (1998)
44. P.F. Kolb, J. Sollfrank, U. Heinz: hep-ph/0006129
45. D. Teaney, J. Lauret, E.V. Shuryak: in progress
46. S. Bass, A. Dumitru et al.: nucl-th/9902062
47. H. Sorge: Phys. Rev. C52, 3291(1995)
48. E.V. Shuryak: Invited talk at 14th International Conference on Ultrarelativistic

Nucleus-Nucleus Collisions (QM 99), Torino, Italy, 10-15 May 1999, Nucl.Phys.
A661, 119 (1999) [hep-ph/9906443]

49. M. Bleicher, H. Stocker: hep-ph/0006147
50. X.-N. Wang, M. Gyulassy: Phys. Rev. D44, 3501 (1991)
51. H. Heiselberg, A. Levy: Phys. Rev. C59, 2716 (1999) [nucl-th/9812034]
52. D. Kharzeev, M. Nardi: nucl-th/0012025
53. B.B. Back et al. [PHOBOS Collaboration]: Phys. Rev. Lett. 85, 3100 (2000)

[hep-ex/0007036]
54. J.P. Blaizot, A.H. Mueller: Nucl. Phys. B289, 847 (1987); K. Kajantie, P.V.

Landshoff, J. Lindfors: Phys. Rev. Lett. 59, 2527 (1987)
55. T.S. Biro, E. van Doorn, B. Muller, M.H. Thoma, X.N. Wang: Phys. Rev. C48,

1275 (1993) [nucl-th/9303004]
L. Xiong, E. Shuryak, Phys. Rev. C49, 2203 (1994) [hep-ph/9309333]
R. Baier, A.H. Mueller, D. Schiff, D.T. Son: hep-ph/0009237

56. M. Gyulassy, I. Vitev , X.N. Wang: Phys. Rev. Lett. 86, 2537 (2001) [nucl-
th/0012092]

57. K.H. Ackermann et al. [STAR Collaboration]: nucl-ex/0009011
58. E.V. Shuryak: hep-ph/0101269
59. R. Rapp, J. Wambach: nucl-th/0001014
60. E. Kuraev, L. Lipatov, V. Fadin: Sov. Phys. JETP 45, 199 (1977); I. Balitsky,

L. Lipatov: Sov. J. Nucl. Phys. 28, 822 (1978); L. Lipatov, Sov. Phys. JETP
63, 904 (1986)

61. D. Kharzeev, Y. Kovchegov, E. Levin: hep-ph/0007182; E. Shuryak, I. Za-
hed: Phys. Rev. D62, 085014 (2000); [hep-ph/0005152]; M. A. Nowak, E. V.
Shuryak, I. Zahed: hep-ph/0012232; Phys. Rev. D, in press

62. N. Manton: Phys. Rev. D28, 2019 (1983); F.R. Klinkhamer, N. Manton: Phys.
Rev. D30, 2212 (1984)

63. J. Zadrozny: Phys. Lett. B284, 88 (1992)
M. Hellmund, J. Kripfganz: Nucl. Phys. B373, 749 (1992)

64. G.W. Carter, E.V. Shuryak: Sphaleron decays, in progress



The Color Glass Condensate
and Small-x Physics

Larry McLerran

Nuclear Theory Group, Brookhaven National Laboratory
Upton, NY 11793, USA

Summary. The Color Glass Condensate is a state of high-density gluonic matter
which controls the high-energy limit of hadronic matter. The article begins with
a discussion of general problems of high-energy strong interactions. The infinite-
momentum-frame description of a single hadron at very small x is developed, and
this picture is applied to the description of ultrarelativistic nuclear collisions. Recent
developments in the renormalization group description of the Color Glass Conden-
sate are reviewed.

1 General Considerations

1.1 Introduction

QCD is the correct theory of hadronic physics. It has been tested in var-
ious experiments. For high-energy short-distance phenomena, perturbative
QCD computations successfully confront experiment. In lattice Monte-Carlo
computations, one gets a successful semi-quantitative description of hadronic
spectra, and perhaps in the not too distant future one will obtain precise
quantitative agreement.

At present, however, all analytic computations and all precise QCD tests
are limited to a small class of problems which correspond to short-distance
physics, or to semi-quantitative comparisons with the results of lattice gauge
theory numerical computations. For the short-distance phenomena, there is
some characteristic energy transfer scale E, and one uses asymptotic freedom,

αS(E) → 0 (1)

as E → ∞. For example, in Fig. 1, two hadrons collide to make a pair
of jets. If the transverse momenta of the jets is large, the strong coupling
strength which controls this production is evaluated at the pT of the jet. If
pT >> ΛQCD, then the coupling is weak and this process can be computed in
perturbation theory. QCD has also been extensively tested in deep inelastic
scattering. In Fig. 2, an electron exchanges a virtual photon with a hadronic
target. If the virtual photon momentum transfer Q is large, then one can use
weak coupling methods.
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gluon or quark

hadron

hadron

gluon or quark

Fig. 1. Hadron-hadron scattering to produce a pair of jets

electron

photon

hadron

quark

Fig. 2. Deep inelastic scattering of an electron on a hadron

One question which we might ask is whether there are non-perturbative
“simple phenomena” which arise from QCD which are worthy of further
effort. The questions I would ask before I would become interested in under-
standing such phenomena are

• Is the phenomenon simple in structure?
• Is the phenomenon pervasive?
• Is it reasonably plausible that one can understand the phenomenon from

first principles, and compute how it would appear in nature?

I will argue that gross or typical processes in QCD, which by their very
nature are pervasive, appear to follow simple patterns. The main content of
this first chapter is to show some of these processes, and pose some simple
questions about their nature which we do not yet understand.

My goal is to convince you that much of these average phenomena of
strong interactions at extremely high energies is controlled by a new form of
hadronic matter, a dense condensate of gluons. This is called the Color Glass
Condensate since
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• Color: The gluons are colored.
• Glass: We shall see that the fields associated with the glass evolve very

slowly relative to natural time scales, and are disordered. This is like a
glass which is disordered and is a liquid on long time scales but seems to
be a solid on short time scales.

• Condensate: There is a very high density of massless gluons. These gluons
can be packed until their phase space density is so high that interactions
prevent more gluon occupation. This forces at increasingly high density the
gluons to occupy higher momenta, and the coupling becomes weak. The
density saturates at dN/d2pT d

2rT ∼ 1/αs >> 1, and is a condensate.

In this article, I will try to explain why the above is very plausible.

1.2 Total Cross-Sections at Asymptotic Energy

Computing total cross sections as E → ∞ is one of the great unsolved prob-
lems of QCD. Unlike for processes which are computed in perturbation theory,
it is not required that any energy transfer becomes large as the total colli-
sion energy E → ∞. Computing a total cross section for hadronic scattering
therefore appears to be intrinsically non-perturbative. In the 60’s and early
70’s, Regge theory was extensively developed in an attempt to understand
the total cross section. The results of this analysis were to my mind inconclu-
sive, and certainly can not be claimed to be a first-principles understanding
from QCD.

The total cross section for pp and pp collisions is shown in Fig. 3. Typi-
cally, it is assumed that the total cross section grows as ln2E as E → ∞. This
is the so called Froissart bound which corresponds to the maximal growth
allowed by unitarity of the S matrix. Is this correct? Is the coefficient of
ln2E universal for all hadronic precesses? Why is the unitarity limit sat-
urated? Can we understand the total cross section from first principles in
QCD? Is it understandable in weakly coupled QCD, or is it an intrinsically
non-perturbative phenomenon?

1.3 How Are Particles Produced in High-Energy Collisions?

In Fig. 4, I plot the multiplicity of produced particles in pp and in pp collisions.
The last six points correspond to the pp collisions. The three upper points are
the multiplicity in pp collisions, and the bottom three have the mutliplicity at
zero energy subtracted. The remaining points correspond to pp. Notice that
the pp points and those for pp with zero energy multiplicity subtracted fall
on the same curve. The implication is that whatever is causing the increase
in multiplicity in these collisions may be from the same mechanism. Can we
compute N(E), the total multiplicity of produced particles as a function of
energy?
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Fig. 4. The total multiplicity in pp and pp collisions

and that

p+p− =
1
2
(E2 − p2

z) =
1
2
(p2

T +m2) =
1
2
m2

T . (4)

This equation defines the transverse mass mT . (Please note that my metric
is the negative of that conventionally used in particle physics.)

Consider a collision in the center of mass frame as shown in Fig. 5. In
this figure, we have assumed that the colliding particles are large compared
to the size of the produced particles. This is true for nuclei, or if the typical
transverse momenta of the produced particles are large compared to ΛQCD,
since the corresponding size will be much smaller than a fm. We have also
assumed that the colliding particles have an energy which is large enough so
that they pass through one another and produce mesons in their wake. This
is known to happen experimentally: the particles which carry the quantum
numbers of the colliding particles typically lose only some finite fraction of
their momenta in the collision.

The right moving particle which initiates the collision shown in Fig. 5
has p+

1 ∼ √
2 | pz | and p−

1 ∼ 1
2
√

2
m2

T / | pz |. For the colliding particles
mT = mprojectile (because the transverse momentum is zero, the transverse
mass equals the particle mass). For particle 2, we have p+

2 = p−
1 and p−

2 = p+
1 .

If we define the Feynman x of a produced pion as

x = p+
π /p

+
1 , (5)

then 0 ≤ x ≤ 1. (This definition agrees with Feynman’s original one if the
energy of a particle in the center of mass frame is large and the momentum is
positive. We will use this definition as a generalization of the original one of
Feynman since it is invariant under longitudinal Lorentz boosts.) The rapidity
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large p large psmall p

Fig. 5. A hadron-hadron collision. The produced particles are shown as circles

of a pion is defined to be

y =
1
2
ln(p+

π /p
−
π ) =

1
2
ln(2p+2/m2

T ). (6)

For pions, the transverse mass includes the transverse momentum of the pion.
The pion rapidity is always in the range −yCM ≤ y ≤ yCM where

yCM = ln(p+/mprojectile). All the pions are produced in a distribution of
rapidities within this range.

A distribution of produced particles in a hadronic collision is shown in
Fig. 6. The leading particles are clustered around the projectile and target
rapidities. For example, in a heavy ion collision, this is where the nucleons
would be. The higher curve shows the distribution of produced mesons.

dN___
dy

yprojyproj-

Fig. 6. The rapidity distribution of particles produced in a hadronic collision
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These definitions are useful, among other reasons, because of their simple
properties under longitudinal Lorentz boosts: p± → κ±1p± where κ is a
constant. Under boosts, the rapidity just changes by a constant.

The distribution of mesons, largely pions, shown in Fig. 6 are conve-
niently thought about in the center of mass frame. Here we imagine the
positive rapidity mesons as somehow related to the right moving particle and
the negative rapidity particles as related to the left moving particles. We de-
fine x = p+/p+

projectile and x′ = p−/p−
projectile and use x for positive rapidity

pions and x′ for negative rapidity pions.
Several theoretical issues arise in multiparticle production. Can we com-

pute dN/dy? Or even dN/dy at y = 0? How does the average transverse
momentum of produced particles < pT > behave with energy? What is the
ratio of produced strange/nonstrange mesons, and corresponding ratios of
charm, top, bottom etc. at y = 0 as the center of mass energy approaches
infinity? Does multiparticle production as E → ∞ at y = 0 become simple,
understandable and computable?

There is a remarkable feature of rapidity distributions of produced
hadrons, which we shall refer to as Feynman scaling. If we plot rapidity
distributions of produced hadrons at different energies, then as function of
the distance from the fragmentation region, the rapidity distributions are to
a good approximation independent of energy. This is illustrated in Fig. 7.
This means that as we go to higher and higher energies, the new physics is
associated with the additional degrees of freedom at small rapidities in the
center of mass frame (small-x degrees of freedom). The large-x degrees of
freedom do not change much. This suggests that there may be some sort of
renormalization group description in rapidity where the degrees of freedom
at larger x are held fixed as we go to smaller values of x. We shall see that
in fact these large-x degrees of freedom act as sources for the small-x degrees
of freedom, and the renormalization group is generated by integrating out
low-x degrees of freedom to generate these sources.

1.5 Deep Inelastic Scattering

In Fig. 2, deep inelastic scattering is shown. Here an electron emits a virtual
photon which scatters from a quark in a hadron. The momentum and energy
transfer of the electron is measured, and the results of the break-up are not. I
will not develop the theory of deep inelastic scattering in this article. Suffice
it to say, that this measurement is sufficient at large momenta transfer Q2 to
measure the distributions of quarks in a hadron.

To describe the quark distributions, it is convenient to work in a reference
frame where the hadron has a large longitudinal momentum p+

hadron. The
corresponding light cone momentum of the constituent is p+

constituent. We
define x = p+

constituent/p
+
hadron. This x variable is equal to the Bjorken x

variable, which can be defined in a frame independent way. In this frame-
independent definition, x = Q2/2p · Q, where p is the momentum of the
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dN___
dy

yprojyproj-

Fig. 7. Feynman scaling of rapidity distributions. The two different shapes corre-
spond to rapidity distributions at different energies

hadronic target and Q is the momentum of the virtual photon. The cross
section which one extracts in deep inelastic scattering can be related to the
distributions of quarks inside a hadron, dN/dx.

It is useful to think about the distributions as a function of rapidity. We
define this for deep inelastic scattering as

y = yhadron − ln(1/x) (7)

and the invariant rapidity distribution as

dN/dy = xdN/dx. (8)

dN
dy

y

Fig. 8. The rapidity distribution of gluons inside of a hadron

In Fig. 8, a typical dN/dy distribution for constituent gluons of a hadron
is shown. This plot is similar to the rapidity distribution of produced particles
in deep inelastic scattering. The main difference is that we have only half of
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the plot, corresponding to the left moving hadron in a collision in the center
of mass frame.

We shall later argue that there is in fact a relationship between the
structure functions as measured in deep inelastic scattering and the rapidity
distributions for particle production. We will argue that the gluon distribu-
tion function is in fact proportional to the pion rapidity distribution.

The small-x problem is that in experiments at HERA the rapidity dis-
tribution function for quarks grows as the rapidity difference between the
quark and the hadron grows. This growth appears to be more rapid than
simply | yproj − y | or (yproj − y)2, and various theoretical models based on
the original considerations of Lipatov and colleagues suggest it may grow as
an exponential in | yproj − y |.[1] (Consistency of the BFKL approach with
the more established DGLAP evolution equations remains an outstanding
theoretical problem [2].) If the rapidity distribution grew at most as y2, then
there would be no small-x problem. We shall try to explain the reasons for
this later in this article.

xG(x,Q 2)

x10-110-3 10-210-4

Q2 = 200 GeV2

Q2 = 20 GeV 2

Q2= 5 GeV2

Fig. 9. The ZEUS data for the gluon structure functions

In Fig. 9, the ZEUS data for the gluon structure function is shown [3]. I
have plotted the structure function forQ2 = 5 GeV2, 20 GeV2, and 200 GeV2.
The structure function depends upon the resolution of the probe, that is Q2.
Note the rise of xg(x) at small x, this is the small-x problem. If one had plot-
ted the total multiplicity of produced particles in pp and pp collisions on the
same plot, one would have found rough agreement in the shape of the curves.
Here I would use y = log(Ecm/1 GeV ) for the pion production data. This
is approximately the maximal value of rapidity difference between centrally
produced pions and the projectile rapidity. The total multiplicity would be
rescaled so that at small-x it matches the gluon structure functions. This
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We shall later argue that in fact the distribution functions at fixed Q2

do saturate and cease growing so rapidly at high energy. The total number of
gluons, however, demands a resolution scale, and we will see that the natural
intrinsic scale is growing at smaller values of x, so that effectively, the total
number of gluons within this intrinsic scale is always increasing. The quantity

Λ2 =
1

πR2

dN

dy
(9)

defines this intrinsic scale. Here πR2 is the cross section for hadronic scatter-
ing from the hadron. For a nucleus, this is well defined. For a hadron, this is
less certain, but certainly if the wave lengths of probes are small compared
to R, this should be well defined. If

Λ2 >> Λ2
QCD (10)

as the HERA data suggest, then we are dealing with weakly coupled QCD
since αS(Λ) << 1.

Even though QCD may be weakly coupled at small x, that does not mean
the physics is perturbative. There are many examples of nonperturbative
physics at weak coupling. An example is instantons in electroweak theory,
which lead to the violation of baryon number. Another example is the atomic
physics of highly charged nuclei. The electron propagates in the background
of a strong nuclear Coulomb field, but on the other hand, the theory is weakly
coupled and there is a systematic weak coupling expansion which allows for
computation of the properties of high Z atoms (Z is the charge of the nucleus).

We call this assortment of gluons a Color Glass Condensate. The name
follows from the fact that the gluons are colored, and we have seen that
they are very dense. For massless particles we expect that the high density
limit will be a Bose condensate. The phase space density will be limited by
repulsive gluon interactions, and be of order 1/αs >> 1. The glass nature
follows because these fields are produced by partons at higher rapidity, and
in the center of mass frame, they are Lorentz time dilated. Therefore the
induced fields at smaller rapidity evolve slowly compared to natural time
scales. These fields are also disordered. These two properties are similar to
that of a glass which is a disodered material that is a liquid on long time
scales and a solid on short ones.

If the theory is local in rapidity, then the only parameter which can de-
termine the physics at that rapidity is Λ2. Locality in rapidity means that
there are not long-range correlations in the hadronic wave function as a func-
tion of rapidity. In pion production, it is known that except for overall global
conserved quantities such as energy and total charge, such correlations are of
short range. Note that if only Λ2 determines the physics, then in an approx-
imately scale invariant theory such as QCD, a typical transverse momentum
of a constituent will also be of order Λ2. If Λ2 >> 1/R2, where R is the radius
of the hadron, then the finite size of the hadron becomes irrelevant. Therefore
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at small enough x, all hadrons become the same. The physics should only be
controlled by Λ2.

There should therefore be some equivalence between nuclei and, say,
protons. When their Λ2 values are the same, their physics should be the same.
We can take an empirical parameterization of the gluon structure functions
as

1
πR2

dN

dy
∼ A1/3

xδ
, (11)

where δ ∼ 0.2 − 0.3. This suggests that there should be the following corre-
spondences:

• RHIC with nuclei ∼ HERA with protons
• LHC with nuclei ∼ HERA with nuclei

Estimates of the parameter Λ for nuclei at RHIC energies give ∼ 1 −
2 GeV, and at LHC 2 − 3 GeV.

Since the physics of high gluon density is weak coupling we have the
hope that we might be able to do a first principle calculation of

• the gluon distribution function,
• the quark and heavy quark distribution functions,
• the intrinsic pT distributions of quarks and gluons.

We can also suggest a simple escape from unitarity arguments which
suggest that the gluon distribution function must not grow at arbitrarily
small x. The point is that at smaller x, we have larger Λ and correspondingly
larger pT . A typical parton added to the hadron has a size of order 1/pT .
Therefore although we are increasing the number of gluons, we do it by
adding in more gluons of smaller and smaller size. A probe of size resolution
Δx ≥ 1/pT at fixed Q will not see partons smaller than this resolution size.
They therefore do not contribute to the fixed Q2 cross section, and there is
no contradiction with unitarity.

1.6 Heavy-Ion Collisions

In Fig. 11, the standard light cone cartoon of heavy-ion collisions is shown
[6]. To understand the figure, imagine we have two Lorentz contracted nuclei
approaching one another at the speed of light. Since they are well localized,
they can be thought of as sitting at x± = 0, that is along the light cone, for
t < 0. At x± = 0, the nuclei collide. To analyze this problem for t ≥ 0, it
is convenient to introduce a time variable which is Lorentz covariant under
longitudinal boosts

τ =
√
t2 − z2 (12)
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and a space-time rapidity variable

η =
1
2
ln

(
t− z

t+ z

)
. (13)

For free streaming particles

z = vt =
pz

E
t (14)

we see that the space-time rapidity equals the momentum space rapidity

η = y. (15)

Hadron Gas

QGP

Parton Formation

Thermalization

t

z

Fig. 11. A space-time figure for ultrarelativistic heavy-ion collisions

If we have distributions of particles which are slowly varying in rapidity,
it should be a good approximation to take the distributions to be rapidity
invariant. This should be valid at very high energies in the central region.
By the correspondence between space-time and momentum space rapidity,
it is plausible therefore to assume that distributions are independent of η.
Therefore distributions are the same on lines of constant τ , which is as shown
in Fig. 11. At z = 0, τ = t, so that τ is a longitudinally Lorentz invariant
time variable.

We expect that at very late times, we have a free streaming gas of
hadrons. These are the hadrons which eventually arrive at our detector. At
some earlier time, these particles decouple from a dense gas of strongly in-
teracting hadrons. As we proceed earlier in time, at some time there is a
transition between a gas of hadrons and a plasma of quarks and gluons. This
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may be through a first-order phase transition where the system might exist
in a mixed phase for some length of time, or perhaps there is a continuous
change in the properties of the system.

At some earlier time, the quarks and gluons of the quark-gluon plasma
are formed. This is at RHIC energies, a time of the order of a fm, perhaps
as small as 0.1 fm. As they form, the particles scatter from one another, and
this can be described using the methods of transport theory. At some later
time they have thermalized, and the system can be approximately described
using the methods of perfect fluid hydrodynamics.

In the time between that for which the quarks and gluons have been
formed and τ = 0, the particles are being formed. This is where the initial
conditions for a hydrodynamic description are made.

In various levels of sophistication, one can compute the properties of
matter made in heavy-ion collisions at times later than the formation time.
The problems are understood in principle for τ ≥ τformation if perhaps not
in fact. Very little is known about the initial conditions.

In principal, understanding the initial conditions should be the simplest
part of the problem. At the initial time, the degrees of freedom are most
energetic and therefore one has the best chance to understand them using
weak coupling methods in QCD.

There are two separate classes of problems one has to understand for
the initial conditions. First the two nuclei which are colliding are in single
quantum mechanical states. Therefore for some early time, the degrees of
freedom must be quantum mechanical. This means that

ΔzΔpz ≥ 1. (16)

Therefore classical transport theory cannot describe the particle down to
τ = 0 since classical transport theory assumes we know a distribution function
f(p,x, t), which is a simultaneous function of momenta and coordinates. This
can also be understood as a consequence of entropy. An initial quantum state
has zero entropy. Once one describes things by classical distribution functions,
entropy has been produced. Where did it come from?

Another problem which must be understood is classical charge coher-
ence. At very early time, we have a tremendously large number of particles
packed into a longitudinal size scale of less than a fm. This is due to the
Lorentz contraction of the nuclei. We know that the particles cannot interact
incoherently. For example, if we measure the field due to two opposite charges
at a distance scale r large compared to their separation, we know the field
falls as 1/r2, not 1/r. On the other hand, in cascade theory, interactions are
taken into account by cross sections which involve matrix elements squared.
There is no room for classical charge coherence.

There are a whole variety of problems one can address in heavy-ion
collisions such as:

• What is the equation of state of strongly interacting matter?



The Color Glass Condensate and Small-x Physics 305

• Is there a first-order QCD phase transition?

These issues and others would take us beyond the scope of this article. The
issues that I would like to address are related to the determination of the
initial conditions, a problem which can hopefully be addressed using weak
coupling methods in QCD.

1.7 Universality

There are two separate formulations of universality that are important in
understanding small-x physics.

The first is a weak universality. This is the statement that physics should
only depend upon the variable [7]

Λ2 =
1

πR2

dN

dy
. (17)

As discussed above, this universality has immediate experimental
consequences which can be directly tested.

The second is a strong universality which is meant in a statistical me-
chanical sense. At first sight it appears to be a formal idea with little relation
to experiment. If it is, however, true, its consequences are very powerful and
far reaching. What we shall mean by strong universality is that the effec-
tive action which describes a small-x distribution function is critical and at
a fixed point of some renormalization group. This means that the behavior
of correlation functions is given by universal critical exponents, and these
universal critical exponents depend only on general properties of the theory
such as the symmetries and dimensionality.

Since the correlation functions determine the physics, this statement says
that the physics is not determined by the details of the interactions, only by
very general properties of the underlying theory!

2 A Very-High-Energy Nucleus

In this chapter, I will consider the properties of a single nucleus [7]-[9]. I will
develop the theory of the small x part of the nucleus, the components most
relevant in the high energy limit. I will begin with some general consider-
ations. This will largely be done to develop approximations which will be
useful later, and leads directly to the Color Glass description. I then present
a brief review of light cone quantization. Finally, I turn to a computation of
the color fields which describe the nuclear wave function at small x. I show
that in a simple approximation for the Color Glass, one recovers saturation,
and that the phase space density of the fields is of order 1/αs which is typical
of a Bose condensate.
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2.1 Approximations and the Color Glass

In the previous chapter, I argued that when we go to small x

Λ2 =
1

πR2

dN

dy
>> Λ2

QCD, (18)

the theory is weakly coupled, αs(Λ) << 1. The typical transverse momentum
scale of constituents of this low-x part of the hadron wave function is

p2
T ∼ Λ2 >> 1/R2

had. (19)

This equation means that the scale of transverse variation of the hadron
is over much larger sizes than the transverse de Broglie wave length. I can
therefore treat the hadron as having a well-defined size and collisions will
have a well-defined impact parameter.

For our purposes, it is sufficient to treat the hadron as a thin sheet of
infinite transverse extent. The transverse variation in radius can be reinserted
in an almost trivial generalization of these considerations. The thinness of the
sheet follows because I shall assume that the sources for the fields at small
x come from partons at much larger x which are Lorentz contracted to size
scales much smaller than can be resolved. In Fig. 12, a nucleus in the infinite
momentum frame is shown, within the approximations described above.

dx

Fig. 12. A single nucleus in the infinite momentum frame as seen by a small x
probe

Recall from the first chapter, we introduced rapidities associated with
produced particles in hadron-hadron collisions,

y =
1
2
ln(p+/p−) = ln(

√
2p+/MT )

= ln(
√

2p+
had/MT ) + ln(p+/p+

had) ∼ yhad − ln(1/x). (20)
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This expression shows that the rapidity of produced hadrons can be written
in the form used to describe the rapidity of constituents of a hadron. If we
were to think of both the constituents and produced partons as pions, they
would be the same, or alternatively if we think of both the produced and
constituent partons as gluons. We can convert to spacetime rapidity using
the uncertainty relation p±x∓ ∼ 1 and get

y ∼ 1
2
ln(x−/x+) ∼ yhad − ln(x−p+

had). (21)

We have assumed in deriving this relationship that the typical values of the
proper time τ =

√
x+x− are not large compared to natural scales such as

a transverse mass. These relations argue that all rapidities, up to shifts of
order one, are the same. We can identify all momentum-space and space-
time rapidities! This has the profound consequence that at high energies
momentum space and space-time are intrinsically correlated, and particles
which arise from a localized region of momentum space rapidity also arise
from a localized region of space-time rapidity.

Now we illustrate a high-energy hadron in terms of space-time rapidity.
This has the effect of spreading out the thin sheet shown in Fig. 12, as
shown in Fig. 13. Note that the partons which are shown have an ordering
in momentum space rapidity which corresponds to their coordinate space
rapidity. Fast partons are to the left. In this Figure, I have drawn a tube of
transverse extent dx which goes through the nucleus. I take dx << 1 fm so
that one is resolving the constituents of ordinary hadrons. Notice that when
dx → 0, the longitudinal separation between hadrons which intersect the
tube becomes large. If I also require that the energy is high enough so that
there is always a large number of partons which intersect the box (which are
longitudinally well separated), then one can think of a source associated with
the charge inside the box, and this charge has a random distribution over the
transverse area of the box. (At what scale the source becomes random is not
entirely clear from this discussion. This will be resolved more carefully later.)
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Fig. 13. A single nucleus shown in terms of the space-time rapidity. The full circles
indicate partons
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In the limit where 1/Λ << dx << 1 fm, there are many charges inside
the box of dimension dx. The charge should go over to a classical charge on
this resolution scale because we can ignore commutators of charges

| [Qa, Qb] |=| ifabcQc |<< Q2. (22)

We can define a current associated with this charge which is localized in the
sheet as

Jμ
a = δμ+δ(x−)qa(xT ). (23)

The + component of the current is the only important one because the sheet
is traveling near the speed of light. The source qa(xT ) is a c-number color
charge density which is a random variable on the sheet. It is only defined on
scales 1/Λ << dx << 1 fm. The δ-function of x− expresses the fact that the
source is on a thin sheet. In fact, for many applications, we will have to relax
the δ-function assumption, and work with a charge density which includes
the effect of distribution in x− as

qa(xT ) =
∫
dx− ρa(x−, xT ) (24)

and where for many purposes

ρa(x−, xT ) ∼ δ(x−)qa(xT ). (25)

We now know how to write down a theory. It is a theory where one
computes the classical gluon field in stationary phase approximation and
then integrates over a random source function. Its measure is

Z =
∫

[dA][dρ]exp
{
iS[A] + iJ+A− − 1

2

∫
dx−d2xT

ρ2(x−, xT )
μ2(x−)

}
. (26)

In this theory, we have assumed that the sources are randomly distributed as
a Gaussian. This turns out to be an approximation valid in a particular range
of resolution dx, and can be fixed up for a wider range. This will be discussed
when we do the renormalization group. The sources and fields are coupled
together in the standard J · A form. This results in the problem that the
extended current conservation law DμJ

μ = 0 makes J not an independent
function. This problem can be avoided by introducing a generalization of
the J · A coupling. This generalization turns out to be important for the
renormalization group analysis of this theory, but is not important when we
compute the classical field associated with these sources.

The above theory implicitly has cutoffs in it. We have discussed the
range of dx for which this effective theory is valid. Implicit in the analysis is
that the fields we are computing have p+ values much less than those of the
sources. This implies there is an upper p+ cutoff in the fields A considered.
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If we were to Fourier analyze the sources ρ, they would have their support
for | p+ | which is greater than that of the cutoff. This cutoff, is of course,
entirely arbitrary, and the lack of dependence of physical quantities upon this
cutoff forms the basis of the renormalization group.

Notice that this theory, in spite of having a gauge dependent source, is
gauge invariant on account of the integration over all sources. This computa-
tion of classical fields associated with sources and then averaging over sources
is similar to the mathematics of glasses. The physical origin of this similarity
is the Lorentz time dilation of the source for the fields and the disorder of
the gluon field. The Lorentz time dilation is of course an approximation, and
if one were to observe these classical fields over long enough time scales they
would evolve, as do the atoms in a glass.

Notice that

< ρa(x)ρb(y) >= δabδ(3)(x− y)μ2(x−) (27)

so that μ2 is the charge squared per unit transverse area per unit x− scaled
by 1/(N2

c − 1).

2.2 Light Cone Quantization

Before discussing the properties of classical fields associated with these
sources, it is useful to review some properties of light cone quantization [10].
This will allow us to pick out physical observables, such as the gluon density,
from expectation values of gluon field operators.

Light cone coordinates are

x± =
1√
2
(x0 ± x3) (28)

and momenta

p± =
1√
2
(p0 ± p3). (29)

The invariant dot product is

p · x = pt · xt − p+x− − p−x+, (30)

where pt and xt are transverse coordinates. This implies that in this basis
the metric is g+− = g−+ = −1, gij = δij where i, j refer to transverse
coordinates. All other elements of the metric vanish.

An advantage of light cone coordinates is that if we do a Lorentz boost
along the longitudinal direction with Lorentz gamma factor γ = cosh(y) then
p± → e±yp±.

If we let x+ be a time variable, we see that the variable p− is to be inter-
preted as an energy. Therefore, when we have a field theory, the component
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of the momentum operator P− will be interpreted as the Hamiltonian. The
remaining variables are to be thought of as momenta and spatial coordinates.
In Fig. 14, there is a plot of the z, t plane. The line x+ = 0 provides a sur-
face where initial data might be specified. Time evolution is in the direction
normal to this surface.

x + = 0

Fig. 14. The initial value problem in light cone coordinates

We see that an elementary wave equation

(p2 +M2)φ = 0 (31)

holds and is particularly simple in light cone gauge. Since p2 = p2
t − 2p+p−

this equation is of the form

p−φ =
p2

t +M2

2p+ φ (32)

and is first order in time. In light cone coordinates, the dynamics looks similar
to that of the Schrödinger equation. The initial data to be specified is only
the value of the field on the initial surface.

In the conventional treatment of the Klein-Gordon field, one must specify
the field and its first derivative (the momentum) on the initial surface. In light
cone coordinates, the field is sufficient and the field momentum is redundant.
This means that the field momentum will not commute with the field on the
initial time surface!

Lets us work all this out with the example of the Klein-Gordon field.
The action for this theory is

S = −
∫
d4x

{
1
2
(∂φ)2 +

1
2
M2φ2

}
. (33)
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The field momentum is

Π(xt, x
−) =

δS

δ∂+φ
= ∂−φ =

∂

∂x−φ. (34)

Note that Π is a derivative of φ on the initial time surface. It is therefore
not an independent variable, as would be the case in the standard canonical
quantization of the scalar field.

We postulate the equal-time commutation relation

[Π(xt, x
−), φ(yt, y

−)] = − i

2
δ(3)(x− y) (35)

(The factor of two in the above expression is subtle and comes from a careful
reduction of constrained Dirac bracket quantization for the classical theory to
quantum field theory. It can be checked by verifying that we get the correct
result for the Hamiltonian.) Here the time is x+ = y+ = 0 in both the field
and field momentum. We see therefore that

∂−[φ(x), φ(y)] = − i

2
δ(3)(x− y) (36)

or

[φ(x), φ(y)] = − i

2
ε(x− − y−)δ(2)(x− y). (37)

Here ε(v) is 1/2 for v > 0 and −1/2 for v < 0.
These commutation relations may be realized by the field

φ(x) =
∫

d3p

(2π)32
√

2p+
eipxa(p)

=
∫

p+>0

d3p

(2π)32
√

2p+

{
eipxa(p) + e−ipxa†(p)

}
. (38)

Using

[a(p), a†(q)] = 2p+(2π)3δ(3)(p− q) (39)

one can verify that the equal-time commutation relations for the field are
satisfied.

The quantity 1/p+ in the expression for the field in terms of creation
and annihilation operators is singular when p+ = 0. When we use a princi-
ple value prescription, we reproduce the form of the commutation relations
postulated above with the factor of ε(x− −y−). Different prescriptions corre-
spond to different choices for the inversion of 1

∂− . One possible prescription is
the Leibbrandt-Mandelstam prescription 1/p+ = p−/(p+p− + iε). This pre-
scription has some advantages relative to the principle value prescription in
that it maintains causality at intermediate stages of computations, while the
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principle value prescription does not. In the end, for physical quantities, the
choice of prescription cannot result in different results. Of course, in some
schemes the computations may become prohibitively difficult.

The light cone Hamiltonian is

P− =
∫

p+>0

d3p

(2π)32p+

p2
t +M2

2p+ a†(p)a(p) (40)

with obvious physical interpretation.
In a general interacting theory, the Hamiltonian will, of course, be more

complicated. The representation for the fields in terms of creation and anni-
hilation operators will be the same as above. Note that all particles created
by a creation operator have positive P+. Therefore, since the vacuum has
P+ = 0, there can be no particle content to the vacuum. It is a trivial state.
Of course, this must be wrong since the physical vacuum must contain con-
densates such as the one responsible for chiral symmetry restoration. It can
be shown that such non-perturbative condensates arise in the P+ = 0 modes
of the theory. We have not been careful in treating such modes. For pertur-
bation theory, presumably to all orders, the above treatment is sufficient for
our purposes.

2.3 Light Cone Gauge QCD

In QCD we have a vector field Aμ
a . This can be decomposed into longitudinal

and transverse parts as

A±
a =

1√
2
(A0

a ±Az
a) (41)

and the transverse as lying in the two-dimensional plane orthogonal to the
beam z axis. Light cone gauge is

A+
a = 0. (42)

In this gauge, the equation of motion

DμF
μν = 0 (43)

is for the + component

DiF
i+ −D+F−+ = 0, (44)

which allows one to compute A− in terms of Ai as

A− =
1
∂+2D

i∂+Ai. (45)

This equation says that we can express the longitudinal field entirely in terms
of the transverse degrees of freedom which are specified by the transverse
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fields entirely and explicitly. These degrees of freedom correspond to the two
polarization states of the gluons.

We therefore have

Ai
a(x) =

∫
p+>0

d3p

(2π)32p+

(
eipxai

a(p) + e−ipxai†
a (p)

)
, (46)

with

[ai
a(p), aj†

b (q)] = 2p+δabδ
ij(2π)3δ(3)(p− q), (47)

where the commutator is at equal light cone time x+.

2.4 Distribution Functions

We would like to explore some hadronic properties using light cone field
operators. For example, suppose we have a hadron and ask what is the gluon
content of that hadron. Then we would compute

dNgluon

d3p
=< h | a†(p)a(p) | h > . (48)

If we express this in terms of the gluon field, we find

dNgluon

d3p
=

2p+

(2π)3
< h | Aia(p, x+)Aia(−p, x+) | h > (49)

which can be related to the gluon propagator. The quark distribution for
quarks of flavor i (for the sum of quarks and antiquarks) would be given in
terms of creation and annihilation operators for quarks as

dNi

d3p
=< h | {b†i (p)bi(p) + d†

i (p)di(p)} | h >, (50)

where b corresponds to quarks and d to antiquarks. The creation and annihi-
lation operators for quarks and gluons can be related to the quark coordinate
space field operators by techniques similar to those above [11].

2.5 The Classical Gluon Field

To compute the gluon distribution function, we need the expectation value
of the gluon field. To lowest order in weak coupling, this is given by com-
puting the classical gluon field and then averaging over sources. The classical
equation of motion is

DμF
μν = δν+ρ(x−, xT ). (51)
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To solve this equation we shall work in the gauge A− = 0, and then
gauge rotate the solution back to light cone gauge A+ = 0. The solution in
A− = 0 gauge is:

Ai = 0,
−∇2

T A+ = ρ. (52)

Here ρ = U†(x)ρU(x) is the source which has been gauge rotated to this new
gauge. Since the measure for integration over sources is gauge invariant, we
do not have to distinguish between these sources since we can rotate one into
the other.

To rotate back to light cone gauge we use

Aμ = U†AμU +
i

g
U†∂μU (53)

so that the gauge rotation matrix U is

∂+U = −igUA+, (54)

where

A+ = α =
1

−∇2
T

∇ρ. (55)

The solution is [9]-[12]

U† = Pexp

{
ig

∫ x−

x−0

dz−α(z−, xT )

}
. (56)

There is a choice of boundary condition here associated with x+
0 . The am-

biguity with this choice is associated with a residual gauge freedom. We
shall resolve this by choosing retarded boundary conditions, x−

0 → −∞. This
boundary condition lets us construct the solution for U at some x−

1 knowing
only information about α for x− < x−

1 .
The solution in light cone gauge is therefore:

A+ = A− = 0,

Ai =
i

g
U∇iU†. (57)

If x− is outside of the range of support of the source ρ, this can be written
as

Ai = θ(x−)
i

g
V∇iV †, (58)

where

V †(xT ) = Pexp

(
ig

∫ ∞

−∞
dz−α(z−, xT )

)
. (59)
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We now have an explicit expression for the gluon field in terms of the
sources [9],[12]. For our Gaussian weight function, we can now compute the
expectation value of the gluon fields which gives the gluon distribution func-
tion. The details of such a computation are given in Ref. [12]. It is a straight-
forward computation to perform: One can expand the exponentials and com-
pute term by term in the expansion. The series exponentiates. One subtlety
occurs due to logarithmic infrared infinity which is regulated on a scale of or-
der of a fm, where transverse charge correlations go to zero since all hadrons
are color singlets [13]. The result is

< Ai
a(x, x+)Ai

a(0, x+) > =
N2

c − 1
παsNc

1
x2

T

×(
1 − exp{x2

TQ
2
sln(x2

TΛ
2
QCD)/4}) . (60)

In this equation, the saturation momentum is defined as

Q2
s = 2πNcα

2
s

∫
dx−μ2 (61)

and is of the order α2
s times the charge squared per unit area.

This expression can be Fourier transformed to produce the gluon distri-
bution function, with a result as shown in Fig. 15. We can understand this
plot from the properties of the coordinate space distribution function. We
notice that the dominant scale factor in the problem is Qs, so to a first ap-
proximation everything scales in terms of this quantity. Large pT corresponds
to small xT , and the coordinate space distribution behaves as ln(x2

T ) which
corresponds to 1/p2

T . This is typical of a bremstrahlung spectrum. At larger
xT , distribution is of order 1/x2

T , which Fourier transforms into ln(p2
T ) at

small pT . The softer xT dependence at large xT can be traced to a dipole
cancellation of the fields. The monopole charge field, seen at short distances,
is ln(x2

T ) and the dipole cancellation should set in at large distances when
one cannot resolve individual charges, and reduce this by two powers of xT .

The overall scale of the curve is 1/αs. The quantity we are plotting is
in fact the phase space density of gluons. At small αs, this density becomes
large, and the Color Glass becomes a condensate. Hence the name, Color
Glass Condensate.

This form of the gluon distribution function illustrates how the problems
with unitarity can be solved. Let us assume that the saturation momentum
Qs is rapidly increasing as x → 0. If we start with an x so that Q >> Qs,
then, as x decreases, the number of gluons which can be seen in scattering
rises like Q2

s, see Fig. 15. Eventually, Qs becomes larger than Q, in which
case, the number of gluons rises slowly, like ln(Qs). At this point the cross
section saturates since the number of gluons which can be resolved stops
growing, and we are consistent with unitarity constraints.
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Fig. 15. The gluon distribution function

The gluon distribution function is defined to be

xG(x,Q2) =
∫ Q2

0
d2pT

dN

d2pT dy
. (62)

This behaves in the saturation region as πR2Q2, and in the large-Q region as
πR2Q2

s. We expect that Q2
s ∼ charge2/area and due to the random nature of

the way charges add, Q2
s ∼ R. Therefore in the saturation region, the gluon

distribution function is proportional to the surface area of the hadron, that
is the gluons can only be seen which are on the surface of the hadron. In the
large-Q region, one sees gluons from the entire hadron, that is, the hadron
has become transparent.

2.6 The Structure of the Gluon Field

The gluon field arises from a charge density which is essentially a δ-function in
x−. In order to solve the equations of motion, the field must have a disconti-
nuity at x− = 0. This can be achieved with a field which is a two-dimensional
gauge transform of zero field strength on one side of the sheet and a different
gauge transform of zero on the other side. The field strength Fμν is therefore
zero if μ and ν are both in the two-dimensional transverse space. If either
index is −, it also vanishes since there is no change in the x+ direction. The
only non-vanishing component is therefore F i+, and this is a δ-function in
the x− direction. Since F i± = Ei ± εijBj , we see that

E ⊥ B ⊥ z. (63)

The fields are therefore transversely polarized to the direction of motion
and live in the two-dimensional sheet where the charges sit. These are the
non-Abelian generalizations of the Lienard-Wiechert potentials of electrody-
namics. The density of these fields is of order 1/αs. A picture of the Color
Glass Condensate is shown in Fig. 16.
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Fig. 16. The non-Abelian Lienard-Wiechert potentials that form the Color Glass
Condensate

3 Hadron-Hadron Collisions
and the Initial Conditions for Heavy-Ion Collisions

3.1 Phenomenology of Mini-Jets

In the last chapter, we argued that at small x, the typical gluon constituent
of a hadron acquires a transverse momentum of order Qs and that this can
grow as x → 0. This leads us to hope that in hadron-hadron collisions, this
will be the typical momentum scale of particle production. If true, then the
processes are weakly coupled and computable using weak coupling methods.

This is reminiscent of past attempts to compute particle production by
mini-jets [14]-[15]. On dimensional grounds, the cross section for jet produc-
tion is dσ/dyd2pT ∼ α2

s/p
4
T . If we attempt to compute the total cross section

for jet production

dσ

dy
∼ α2

s

∫
Λ2

QCD

d2pT

p4
T

, (64)

the result is infrared sensitive and presumably would be cut off at ΛQCD.
In early computations, one introduced an ad-hoc cutoff which was fixed, and
hopefully large enough so that one could compute the minijet component.
This, of course, left unanswered many questions about the origin of this
cutoff, and the effects of particles produced below the cutoff scale.

In this chapter, we will argue that the Color Glass Condensate cuts off
the integral at a scale of order Qs, the saturation momentum. At large pT ,



318 Larry McLerran

dimensional arguments tell us that the density of produced particles has the
form

1
πR2

dN

d2pT dy
= κ

1
αs

Q4
s

p4
T

. (65)

The factor of 1/p4
T comes about because the high-pT tail is controlled by per-

turbation theory. The 1/αs arises because of the large density of gluons in the
condensate. In fact, if we can successfully formulate the particle production
problem classically, we expect that in general

1
πR2

dN

d2pT dy
=

1
αs
F (Q2

s/p
2
T ). (66)

At large pT >> Qs, F ∼ Q4
s/p

4
T and for small pT << Qs, F should be slowly

varying (logarithmic) or a constant. A plot is shown in Fig. 17.

saturation

region

perturbative
region

ΛQCD Qsat pT

πR2
1 dN

dy

1
p 4

T

Fig. 17. The pT distribution for mini-jets produced by a Color Glass Condensate

A word of caution should be injected about the interpretation of mini-
jet production. Typically it is assumed that there is a simple relationship
between the multiplicity of produced gluon jets and the multiplicity of pions.
Usually, Npion is taken to be some constant of order one times Ngluon. In
our considerations, we can only talk about the gluon mini-jet production,
and it is beyond the scope of these article to relate this to the final-state
multiplicity. Suffice it to say that the situation is controversial, particularly
in heavy-ion collisions where there can be much final-state interaction [16].

Recall that in heavy-ion collisions, we expect that Q2
s ∼ A1/3. At large

pT , Eqn. 66 predicts that

dN

d2pT dy
∼ πR2Q

4
s

p4
T

∼ A4/3

p4
T

. (67)



The Color Glass Condensate and Small-x Physics 319

This result is consistent with hard incoherent scattering. At small pT ,

dN

d2pT dy
∼ πR2 ∼ A2/3 (68)

which is consistent with much shadowing, and the gluons are produced from
the surface of the nuclei.

The total multiplicity per unit rapidity

dN

dy
∼ R2

∫
Q2

s

d2pT
Q4

s

p4
T

∼ R2Q2
s ∼ A (69)

is proportional to A, just as in color string models! This is because for the
Color Glass Condensate, the cutoff in transverse momentum depends on A.
(If one was careful with the factors of αs in the above equation, one would
predict mild logarithmic modifications of the linear dependence on A.) In
addition to the A dependence, there is also a correlation between the energy
dependence of the gluon distribution function at saturation and the multi-
plicity of minijets since

πR2Q2
s =

∫ 1

x

dx′G(x′, Qs), (70)

a relationship which follows from the last chapter.
We can be a little more careful with the numerical factors which deter-

mine the saturation momentum [17]. Using the results of the last chapter,

Q2
s =

2πNcα
2
s

πR2(N2
c − 1)

Q2
color. (71)

Here Q2
color is the color charge squared of all quarks and gluons at larger x

values than that of interest. For a quark,

Q2
quark =

1
Nc(N2

c − 1)
tr τ2

a =
1

2Nc
, (72)

and for a gluon

Q2
gluon =

Nc

(N2
c − 1)

. (73)

We find that

Q2
color =

Nquark

2Nc
+
NcNgluon

(N2
c − 1)

. (74)

If we plug in numbers, at RHIC energies corresponding to x ∼ 10−2, Qs ∼
1 − 2 GeV
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Fig. 18. A collision of two ultra-relativistic hadrons

3.2 Classical Description of Hadron Collisions

We want to describe the collision of two ultra-relativistic hadrons. A collision
is shown in Fig. 18. The hadrons have been Lorentz contracted to thin sheets
and a Color Glass Condensate sits in the planes of both sheets.

Before the collision the non-zero fields are for the right moving nucleus,
F i+ ∼ δ(x−) and for the left moving nucleus F i− ∼ δ(x+). Before the nuclei
pass through one another, nothing happens and the fields in each sheet are
static. When they pass through one another, the sum of these two fields is
not a solution of the equations of motion, unlike the case in electrodynamics,
and this induces a time evolution of the fields [18].

One can understand this from the vector potentials. In Fig. 19 a space-
time diagram is shown for the scattering. In the backward light cone, Region I,
the field is a pure two-dimensional gauge transform of zero field. In crossing
into Regions II and III, the fields must have a discontinuity to match the
charge on the surfaces of the light cone. This requires the vector potential
to be different gauge transforms of zero field strength, G2 and G3 in these
regions. Now in going to Region IV, one could solve either for the sources on
the left edge of the forward light cone with a gauge transform of zero or the
right edge of the forward light cone with a different gauge transform of zero.
One cannot satisfy the equations of motion for the fields in the presence of
the sources on both edges of the light cones with the same gauge transform of
zero field strength. One must produce a field in the forward light cone which
is not a gauge, and therefore matter is produced.

The situation in QCD is completely different than that in electrodynam-
ics. In electrodynamics, one must produce pairs of charged particles to make
matter in the forward light cone. This arises from a quantum correction to
the equations of motion. In QCD, matter is produced classically.

The procedure for solving this problem is now straightforward, in prin-
ciple. One solves the classical equations of motion in the forward light cone
with boundary conditions at the edges of the forward light cone. We will
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G1

G2G3

x+ = 0x- = 0

Region IV
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Region III Region II

Fig. 19. A space-time diagram for the vector potentials in hadron-hadron scattering

shortly determine these boundary conditions and the form of the solution in
the forward light cone. Then one evolves the equations of motion into the
far future. At some time, the energy density becomes dilute, and the field
equations should linearize in some gauge. One can then identify the quanta
of the linearized fields in the standard way that one does classical radiation
theory in electrodynamics.

3.3 The Form of the Classical Field

Before the collision, the form of the classical field can be taken as

A+ = A− = 0,
Ai = θ(x−)θ(−x+)αi

1(xT ) + θ(−x−)θ(x+)αi
2(xT ), (75)

where the αi are two-dimensional gauge transforms of zero field. We will
consider the collision of identical hadrons. The solution in the forward light
cone is therefore expected to be boost invariant. After the collision, a boost
invariant solution is:

A+ = x+α(τ, xT ),
A− = x−β(τ, xT ),
Ai = αi

3(τ, xT ). (76)

We can choose the gauge

x+A− + x−A+ = 0 (77)

so that

α(τ, xT ) = −β(τ, xT ). (78)
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In the forward light cone, the equations of motion are

1
τ3 ∂ττ

3∂τα− [Di, [Di, α]] = 0 (79)

and

1
τ
∂ττ∂τα

i
3 − igτ2[α, [Di, α]] − [Dj , F ji] = 0. (80)

The boundary conditions are determined by matching the solution in
Regions II and III to that in the forward light cone. The result is that α and
αi

3 must both be regular as τ → 0 and

αi
3(0, xT ) = αi

1(xT ) + αi
2(xT ),

α(0, xT ) =
−ig
2

[αi
1(xT ), αi

2(xT )]. (81)

The problem is now well defined, and these equations may be numerically
solved.

The behaviour of these solution at large τ can be extracted. With V (xT )
an element of the group, the solution is a small fluctuation field up to a
possible large gauge transformation

α(τ, xT ) = V ε(τ, xT )V †,

αi
3(τ, xT ) = V (εi3(τ, xT ) +

i

g
∂i)V †. (82)

The small fluctuation fields ε and εi solve the equations

1
τ3 ∂ττ

3∂τ ε− ∇2
T ε = 0 (83)

and

1
τ
∂ττ∂τ ε

i − (∇2
T δ

ij − ∇i∇j)εj = 0. (84)

At large τ , these linear equations can be Fourier analyzed with the result

εa(τ, xT ) =
∫

d2kT

(2π)2
√

2ω
1

τ3/2

(
aa
1(kT )e−ik·x + c.c.

)
(85)

and

εai(τ, xT ) =
∫

d2kT

(2π)2
√

2ω
εij

kj

ω

1
τ1/2

(
aa
2(kT )e−ik·x + c.c.

)
. (86)

In these equations ω =| kT |.
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One can compute the energy distribution associated with these fields as

dE

dyd2kT
=

ω

(2π)2
∑
ia

| aa
i (kT ) |2 (87)

and the multiplicity distribution is given by dividing this by ω, that is

dN

dyd2kT
=

1
(2π)2

∑
ia

| aa
i (kT ) |2 . (88)

These last two formulae correspond to those of free quantum field theory when
we replace a(p), a∗(p) by the creation and annihilation operators a(p), a†(p).
The a(p) are the classical quantities which correspond to the quantum cre-
ation and annihilation operators. These formulae show how to use the clas-
sical solutions to compute distributions of produced minijets.

3.4 Numerical Results for Mini-Jet Production

Krasnitz and Venugopalan have numerically solved the classical equations for
mini-jet production.[19] This involves finding a gauge invariant discretization
of the classical equations of motion. One then solves the classical equations
for a fixed ρ1 and ρ2, and extracts the produced radiation. An ensemble of
sources is produced with the Gaussian weight of the Color Glass, which then
produces an ensemble of radiation fields. These fields are then averaged to
generate the mini-jet distributions.

In Fig. 20, the form of the numerical results for mini-jet production is
illustrated. At large pT , the results of analytic studies are reproduced which
up to logarithms is ∼ 1/p4

T . At pT ≤ Qs, the distribution flattens out [17]-
[18]. To good numerical accuracy, the result in this region can be fit to a
two-dimensional Bose-Einstein distribution,

1
πR2

dN

d2pT dy
∼ 1
αs

1
eκpT /Qs − 1

(89)

where κ is a constant of order 1.
The result at large pT can be computed analytically by expanding the

equations in powers of the gluon field. At high pT , the phase space is not so
heavily occupied, so a field strength expansion makes sense. At small pT , it
is not at all certain that the result is in fact an exact two-dimensional Bose-
Einstein distribution [19]-[21]. In any case, the origins of this distribution
have nothing at all to do with thermodynamics, and it is a useful example
of the traps one can fall into if one assumes that exponential distribution
corresponds to a temperature and thermalization.
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Fig. 20. An illustration of the results generated by numerical simulation of the
classical equations for mini-jet production

3.5 pA Scattering

An interesting example of minijet production is given by the collision of two
hadrons of different size [22]-[24]. We will generically refer to this as pA
scattering, although most of our considerations could be generalized to A′A
nuclear collisions. In Fig. 21, the transverse momentum distribution for pA
scattering is shown.

ΛQCD Q pT

πR2
1 dN

dy

4p
T

p
T
2

Qsat
Ap

sat

1

1

~

~

Fig. 21. The pT distribution for particles produced in a pA collision

There are three distinct regions, which follow from the fact that there
are two saturation scales, QA

s and Qp
s , and Qp

s << QA
s since (QA

s )2 ∼ A1/3.
At very large pT where the fields from both nuclei are small, the distribution
can be computed from perturbation theory, and the distribution falls as 1/p4

T
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and is proportional to (QA
s Q

p
s)

2. This first region is for pT >> QA
s . An

intermediate region follows where the field from the nucleus is strong but
the field from the proton is weak and can be treated perturbatively. This
intermediate region is for Qp

s << pT << QA
s . There is finally the region

where pT << Qp
s and both fields are strong.

We expect that in the intermediate region, the transverse momentum
dependence will be in between the flat behaviour at small pT and the 1/p4

T

behaviour characteristic of large pT . The naive expectation is 1/p2
T in the in-

termediate region. The total multiplicity can be computed if one understands
this intermediate region since the dominant contribution arises here. The
strength in this intermediate region should involve the total charge squared
from the proton, but that from the nucleus should go like p2

T so that when
combined with the 1/p4

T , one gets a distribution proportional to 1/p2
T . This

softer behaviour of the distribution function follows since we are inside the
region where we expect coherence from the field of the nucleus, and since the
distribution should extrapolate between 1/p4

T at very large pT and a constant,
up to logarithms, at very small pT .

In fact, it is possible to compute the behaviour in this intermediate
region. The equations for the classical production can be analytically solved
for any pT >> QA

s . The solution in the forward light cone are plane waves
which are gauge transformed by the field of the large nucleus. The boundary
conditions determine the strength of these waves.

For the total multiplicity, in the large-pT region dN/dyd2pT ∼ A1/3. We
expect that as we interpolate between the proton fragmentation region and
that of the nucleus, we go between O(1) and O(A1/3) as shown in Fig. 22.
For pT in the intermediate region, we expect that dN/dyd2pT is of order 1
except for a small region of rapidity around the fragmentation region of the
nucleus. The total integrated multiplicity arises from this latter region so we
expect that dN/dy ∼ O(1).

O(1)

A

dN

y y  p A

large pT

small pT

dy dpT
2

1/3

Fig. 22. The distribution in rapidity for dN/dyd2pT in a pA collision
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3.6 Thermalization

After the gluons are produced in hadron-hadron collisions, they may rescatter
from one another [16]. If one goes to very small x so that the density of gluons
becomes very large, one expects that the gluons will eventually thermalize.
Due to the very large typical pT , αs << 1, and this takes a time τ ∼ 1/(α2

sQs)
which is longer by a factor of 1/α2

s than the natural time scale. The system
therefore becomes dilute relative to its natural scale.

In the first diagram of Fig. 23, there is ordinary Coulomb scattering.
When all processes which populate and depopulate phase space are summed,
this diagram is only naively logarithmically divergent, and is cut off by the
density dependent Debye mass, ρgluons << p3

T . In the second diagram, there
is no such cancellation, and the diagram is of order 1/(αs

√
ρgluons). At a

time of order 1/(α2
sQs) for a density decreasing like 1/τ as we expect for

ultrarelativistic nuclear collisions, the diagram is enhanced by a factor of
1/αs. This cancels the extra factor of αs coming from the diagram being
higher order in perturbation theory [16].

Fig. 23. The diagrams for gluon scattering which lead to thermalization

What appears to happen is that as the system gets more dilute, it ther-
malizes due to multigluon production. This will modify the relationship be-
tween the number of gluons produced as mini-jets and the pion multiplicity.
How this actually works is not yet fully understood.
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4 The Renormalization Group

The effective action for the theory we have described must be gauge invariant
and properly describe the dynamics in the presence of external sources. For
the theory which we have written down in the past chapters with the J · A
coupling of source to field, gauge invariance is only retained if we impose

DμJ
μ = 0. (90)

This equation presents a problem in our formulation since it implies that the
source cannot be independently specified from the field. This did not present a
problem for the classical theory since one could find a solution which solved
the constraint. When we compute quantum corrections and proceed to a
renormalization group treatment, we must be more careful.

In a clever series of papers [25], it was shown that one can generalize the
J · A coupling. This led Jalilian-Marian, Kovner, Leonidov and Weigert to
propose the action

S = −1
4

∫
d4xF a

μνF
μν
a +

i

Nc

∫
d2xtdx

−δ(x−)

×ρa(xt)trT aexp

{
i

∫ ∞

−∞
dx+T ·A−(x)

}
. (91)

In this equation, the matrix T is in the adjoint representation of the gauge
group. This is required for reality of the action. When this action is extremized
to get the Yang-Mills equations, one can identify the current and show that
the current is covariantly conserved. This action is invariant under gauge
transformations which are identified at x+ = ±∞. (Even this can be corrected
to get a fully invariant theory if one generalizes even further to complex time
Keldysh contours. As shown in Ref. [27], this further generalization does
not affect the renormalization group in lowest non-trivial order.) This is a
consequence of the gauge invariance of the measure of integration over the
sources ρ. It will be taken as a boundary condition on the theory. In general,
if we had not integrated over sources, one could not define a gauge invariant
theory with a source, as gauge rotations would change the definition of the
source. Here because the source is integrated over in a gauge invariant way,
the problem does not arise.

The most general gauge invariant theory which we can write down is
generated from

Z =
∫

[dρ]e−F [ρ]
∫

[dA]eiS[A,ρ]. (92)

This is a generalization of the Gaussian ansatz described in the previous
lecture. It allows for a slightly more complicated structure of stochastic vari-
ation of the sources. The Gaussian ansatz can be shown to be valid when
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evaluating structure functions at large transverse momenta

FGaussian[ρ] =
1
2

∫
dx−d2xt

ρ2(xt)
μ2(x−)

. (93)

This theory is an effective theory valid only in a limited range of rapidity
much less than the rapidity of the source. The sources for this theory sit at
higher rapidity. This happens because as we go to lower values of rapidity, the
fluctuations in the field are integrated out and are replaced by sources and an
integral over fluctuations in the source. The renormalization group equations
which we will describe are what make the theory independent of this cutoff.
To fully determine F in the above equation demands a full solution of these
renormalization group equations. This has yet to be done, although there are
now approximate solutions for small and large transverse momentum of the
fields [27]-[26].

We can understand this a little better by imagining what happens when
we compute a quantum correction to the classical theory. This quantum cor-
rection will generate terms proportional to αsln(Λ+/p+) where Λ+ is the p+

cutoff for our effective theory. Clearly these corrections are small and sensi-
ble only if e−1/αsΛ+ << p+ << Λ+. If we want to generate a good effective
theory at smaller values of p+, we need to break the theory into intervals of
p+ with each interval sufficiently small so that the quantum fluctuations are
small and computable. The relation between one interval and the next is the
renormalization group.

The remarkable thing that happens when one integrates out the fluctu-
ations interval is that only the function F which controls the source strength
is modified! The functional form of F is modified so that this equation is of
the form

d

dy
Z = −H(ρ, δ/δρ)Z, (94)

where

y = ln(Λ+
i /Λ

+
f ), (95)

and Λ+
i,f are the cutoffs at the initial and final values, and

Z = e−F . (96)

This equation is of the form of the time evolution for a two-spatial-dimension
quantum field theory where the coordinates are ρ and the momenta are d/dρ.

4.1 How to Compute the RG Effective Hamiltonian

In the Eqn. 94, the renormalization group Hamiltonian H was introduced.
I will here outline how it is computed. We first take the theory defined for
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p+ < Λ+
i . We integrate out the quantum fluctuations. In particular, the two

point function is

Gij(x, y) =< (Ai(x) + δAi(x))(Ai(y) + δAi(y)) > . (97)

In this equation, A is the classical background field and δA is the small
fluctuation. At the momentum scales which will be of interest for p+ < Λ+

f ,
it is sufficient to consider the equal-time limit of this correlation function.
We now identify

< δAδA > = G < δρδρ > G

= GχG, (98)

where G is the Greens function in the classical background field A. We also
identify

< δA > = G < δρ >

= σ. (99)

We can get exactly the same result by modifying the weight function so that
we reproduce χ and σ and move the cutoff to Λ+

f so that there are no longer
quantum fluctuations to integrate out. This is the origin of the form of Eqn.
94.

Some technical comments about the computations are required. One
must be extremely careful of gauge. The gauge prescriptions of retarded or
advanced for 1/k+ singularities are used. We were not able to effectively use
either Leibbrandt-Mandelstam or principle value prescriptions although this
may be possible in principle. When one computes propagators in background
fields, one gets analytic expressions in terms of line ordered phases of the
source ρ. It is most convenient to compute these in δA− = 0 gauge and
express things in terms of the source in A− = 0 gauge, and then rotate
results back to light cone gauge. This can be carefully done only when the
1/k+ singularity is properly regularized.

If we change the variables to space-time rapidity, we can define

α(y, xT ) =
1

−∇2
T

ρ(y, xT ) (100)

and

V †(y, xT ) = Pexp

(
ig

∫ y

−∞
dy′α(y′, xT )

)
. (101)

After much work, one finds

H =
αs

2

∫
d2xTJ

ia(xT )J ia(xT ), (102)
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where

J ia(xT ) =
∫

d2zT

π

(x− z)i

(x− z)2
(1 − V †(y, xT )V (y, zT ))ab 1

i

δ

δαb(y, zT )
. (103)

The Hamiltonian is positive definite and looks like a pure kinetic energy term
(up to the multiplicative non-linearities) with no potential [27].

The renormalization group above can also be seen to be a consequence of
equations for correlation functions of V (y, xT ) [28]. In Ref. [29] it was shown
that these equations for correlation functions were almost the same as those of
the renormalization group. There was an error in this analysis associated with
the subtleties of gauge fixing, and when repaired gives that these equations
are precisely equivalent [27]. Meanwhile, Weigert showed that the equations
for the correlation functions could be summarized as a Hamiltonian equation
of the form above [30], which was also shown to be precisely the equations
for the renormalization group Hamiltonian [27].

4.2 Quantum Diffusion

The Hamiltonian presented in the previous section is analogous to that with-
out a potential. If we were to ignore the non-linearities associated with the
matrices V , this would be the Hamiltonian for a free theory with only mo-
menta and no potential.

If there was a potential in the Hamiltonian, then at large times the
solution of the above renormalization group equations would be trivial

Z ∼ exp(−yEo), (104)

where Eo is the ground state energy. All expectation values would become
rapidity independent and the solution to the small-x problem would be trivial:
x independence.

The solution to the above equation is more complicated. One can see
this by studying a one-dimensional quantum mechanics problem:

d

dy
Z = −p2

2
Z (105)

with solution

Z =
1√
2πy

exp(−x2/2y). (106)

This equation describes diffusion. The width of the Gaussian in x grows with
time. This is unlike solving

d

dy
Z = −

(
p2

2
+ V (x)

)
Z. (107)
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In this latter case, the coordinate x evolves towards the minimum of V , and
then does undergo small fluctuations around this minimum.

We see therefore that the non-triviality of the small-x problem in QCD
arises because of the quantum diffusive nature of the renormalization group
equations.

4.3 Some Generic Features
of the Renormalization Group Equation

If we compute the correlation function of two sources using Eq. (94), we find
that

d

dy
< ρ(x)ρ(y) >= − < ρ(x)ρ(y)H > . (108)

At large kT when the fields are linear, the gluon structure function is the
same as the source-source correlation function up to a trivial factor of 1/k2

T .
(The momentum kT is conjugate to the coordinate xT −yT .) If we ignore the
non-linearities in H, keeping the lowest-order non-vanishing terms, and if we
integrate by parts the factors of δ/δα(y, xT ), we get a closed linear equation
for the correlation function. This is precisely the BFKL equation.

In fact, in the region where the equations are linear, one is in the high-kT

limit, and this also reduces to the DGLAP and BFKL equations, which are
known to be equivalent if one computes distribution functions to leading order
in αsln(1/x)ln(Q2), where Q is some typical momentum for the correlation
function, Q ∼ kT . When the non-linearities are important, the non-linearities
of this equation cannot be ignored.

The situation is as shown in Fig. 24. In the linear region, one can choose
to evolve using linear equations. In the ln(Q2) direction, the equation is
the DGLAP equation and in the ln(1/x) direction, it is the BFKL equation.
There is a boundary region in the ln(1/x)-ln(Q2) plane. Within this boundary
region, there is a high density of glue and the evolution becomes non-linear.
One always collides with this region if one decreases x and holds Q2 fixed or
decreases Q2 holding x fixed.

4.4 Some Limiting Solutions
of the Renormalization Group Equations

In the small-kT region, we expect that correlation functions such as
< V (x)V †(y) > are very small, since we are probing the theory at distance
scales long compared to natural correlation lengths. In this limit, one might
be able to ignore the non-linearities in the renormalization group equations.
Using that xi/x2 = ∇i/∇2, we have then∫

d2xT J2(xT ) ∼
∫
d2zd2z′ < z | 1

−∇2
T

| z′ >
δ

δα(y, z)
δ

δα(y, z′)
. (109)
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Color Glass Condensate

ln(1/x)

ln(Q^2)

BFKL

DGLAP

ln( ΛQCD)

Fig. 24. The various regions of evolution for structure functions in the ln(1/x)-
ln(Q2) plane

The solution for Eq. (94) is

F =
κ

2αs

∫
dyd2xT ∇i

Tα(y, xT )∇i
Tα(y, xT ). (110)

The small-kT functional F is a pure scale-invariant Gaussian. It is universal
and independent of initial conditions.

In the large-pT region, we perform a mean-field analysis. The result is
that discussed in chapter 2. For details of the analysis leading to the results
of this section, the interested reader is referred to [26].

4.5 Some Speculative Remarks

The form of the renormalization group equation appears to be simple. It
looks like it might even be possible to find exact solutions. In remarkable
works [28],[31], Balitsky and Kovchegov have shown that the equation for
the two-line correlation function W (x)W †(y), where W is in the fundamental
representation becomes a closed non-linear equation in the large-Ncolor limit.
This means that at large Ncolor one can compute this correlation function at
arbitrarily small x including all the non-linearities associated with small x.

Although Kovchegov’s original derivation was for large nuclei, the result
can be shown to follow directly from the renormalization group Eq. (94). This
is done by taking the expectation value of < W (x)W †(y) >, using the form
of the Hamiltonian and a factorization property of expectation values true in
large Ncolor. A derivation is presented in Ref. [26] for the interested reader.

This result is interesting in itself since it means that all of the saturation
effects for F2(x,Q2) may be computed at small x. The Balitsky-Kovchegov
equation has been solved numerically [32]. More important, it suggests that
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perhaps, at least in large Ncolor, the full renormalization group equations
may be solved for F .

5 Concluding Comments

In this article, constraints of space have forced me to not mention many of the
exciting areas that are currently under study. One of these areas is diffraction
[33]-[34]. One can show that the same formalism which gives deep inelastic
scattering also gives diffraction and that there is a simple relation between
diffractive structure functions and deep inelastic scattering. I have also not
developed a formal treatment of deep inelastic scattering within the Color
Glass Condensate picture [35]-[36].

The last chapter is very sketchy, and should mostly provide an introduc-
tion to the literature on this problem. The derivation of the results discussed
in that chapter are onerous, and all the details have been omitted in this arti-
cle. In some sense this is good, since the most interesting part of this problem
is to understand and solve the renormalization group equations, and at least
this problem is clearly stated, and free from the technical details from which
it arises.

An area which should be better understood from the perspective pre-
sented above is the nature of shadowing for nuclei at small x. This relates
deep inelastic scattering and diffraction in a non-trivial way, and the Color
Glass Condensate is one of the few theories available which pretends to treat
both consistently.

The other area where there is much potential is the production of quarks
in hadron-hadron collisions. In particular, the charm quark may provide us a
real clue about non trivial dynamics since its mass is very close to the scale
of the Color Glass Condensate for large nuclei at accessible energies.
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